4.7

Inverse Trigonometric Functions

What you'll learn about

- Inverse Sine Function
- Inverse Cosine and Tangent Functions
- Composing Trigonometric and Inverse Trigonometric Functions
- Applications of Inverse Trigonometric Functions

... and why

Inverse trig functions can be used to solve trigonometric equations.

Inverse Sine Function

[-2, 2] by [-1.2, 1.2] (a)

[-1.5, 1.5] by [-1.7, 1.7] (b)

Inverse Sine Function (Arcsine Function)

The unique angle y in the interval $\left[-\pi/2, \pi/2\right]$ such that $\sin y = x$ is the **inverse sine** (or **arcsine**) of x, denoted $\sin^{-1}x$ or **arcsin** x.

The domain of $y = \sin^{-1} x$ is [-1,1] and the range is $[-\pi/2, \pi/2]$.

Find the exact value without a calculator:
$$\sin^{-1}\left(-\frac{1}{2}\right)$$

Find the exact value without a calculator: $\sin^{-1}\left(-\frac{1}{2}\right)$

Find the point on the right half of the unit circle whose y-coordinate is -1/2 and draw a reference triangle. Recognize this as a special ratio, and the angle in the interval $[-\pi/2, \pi/2]$ whose sin is -1/2 is $-\pi/6$.

Find the exact value without a calculator:
$$\sin^{-1} \left(\sin \left(\frac{\pi}{10} \right) \right)$$
.

Find the exact value without a calculator: $\sin^{-1} \left(\sin \left(\frac{\pi}{10} \right) \right)$.

Draw an angle $\pi/10$ in standard position and mark its y-coordinate on the y-axis. The angle in the interval $[-\pi/2,\pi/2]$ whose sine is this number is $\pi/10$.

Therefore,
$$\sin^{-1} \left(\sin \left(\frac{\pi}{10} \right) \right) = \frac{\pi}{10}$$
.

Inverse Cosine (Arccosine Function)

[-2, 2] by [-1, 3.5] (b)

Inverse Cosine (Arccosine Function)

The unique angle y in the interval $[0, \pi]$ such that $\cos y = x$ is the **inverse cosine** (or **arccosine**) of x, denoted $\cos^{\alpha} x$ or **arccos** x.

The domain of $y = \cos^{-1} x$ is [-1,1] and the range is $[0,\pi]$.

Inverse Tangent Function (Arctangent Function)

Inverse Tangent Function (Arctangent Function)

The unique angle y in the interval $(-\pi/2, \pi/2)$ such that $\tan y = x$ is the **inverse tangent** (or **arctangent**) of x, denoted $\tan^{\alpha} x$ or $\arctan x$.

The domain of $y = \tan^{-1} x$ is $(-\infty, \infty)$ and the range is $(-\pi/2, \pi/2)$.

End Behavior of the Tangent Function

Composing Trigonometric and Inverse Trigonometric Functions

The following equations are always true whenever they are defined:

$$\sin\left(\sin^{-1}(x)\right) = x \quad \cos\left(\cos^{-1}(x)\right) = x \quad \tan\left(\tan^{-1}(x)\right) = x$$

The following equations are only true for x values in the "restricted" domains of sin, cos, and tan:

$$\sin^{-1}(\sin(x)) = x \quad \cos^{-1}(\cos(x)) = x \quad \tan^{-1}(\tan(x)) = x$$

Example Composing Trig Functions with Arcsine

Compose each of the six basic trig functions with $\cos^{-1}x$ and reduce the composite function to an algebraic expression involving no trig functions.

Example Composing Trig Functions with Arcsine

Use the triangle to find the required ratios:

$$\sin(\cos^{-1} x)) = \sqrt{1 - x^2}$$

$$\sin(\cos^{-1} x)) = \sqrt{1 - x^2}$$
 $\csc(\cos^{-1} x)) = \frac{1}{\sqrt{1 - x^2}}$

$$\cos(\cos^{-1} x)) = x$$

$$\sec(\cos^{-1} x)) = \frac{1}{x}$$

$$\tan(\cos^{-1} x)) = \frac{\sqrt{1-x^2}}{x}$$

$$\cot(\cos^{-1} x)) = \frac{x}{\sqrt{1 - x^2}}$$

Quick Review

State the sign (positive or negative) of the sine, cosine, and tangent in quadrant

- 1. I
- 2. III

Find the exact value.

3.
$$\cos \frac{\pi}{6}$$

4.
$$\tan \frac{4\pi}{3}$$

5.
$$\sin -\frac{11\pi}{6}$$

Quick Review Solutions

State the sign (positive or negative) of the sine, cosine, and tangent in quadrant

Find the exact value.

3.
$$\cos \frac{\pi}{6} \sqrt{3}/2$$

4.
$$\tan \frac{4\pi}{3} \sqrt{3}$$

5.
$$\sin -\frac{11\pi}{6}$$
 1/2