4.7 Inverse Trigonometric Functions

Wesley

What you'll learn about

- Inverse Sine Function
- Inverse Cosine and Tangent Functions
- Composing Trigonometric and Inverse Trigonometric Functions
- Applications of Inverse Trigonometric Functions
... and why
Inverse trig functions can be used to solve trigonometric equations.

Inverse Sine Function

Inverse Sine Function (Arcsine Function)

The unique angle y in the interval $[-\pi / 2, \pi / 2]$ such that $\sin y=x$ is the inverse sine (or arcsine) of x, denoted $\sin ^{-1} \boldsymbol{x}$ or $\arcsin \boldsymbol{x}$.

The domain of $y=\sin ^{-1} x$ is $[-1,1]$ and the range is $[-\pi / 2, \pi / 2]$.

Example Evaluate $\sin ^{-1} \boldsymbol{x}$ Without a Calculator

Find the exact value without a calculator: $\sin ^{-1}\left(-\frac{1}{2}\right)$

Example Evaluate $\sin ^{-1} \boldsymbol{x}$ Without a Calculator

Find the exact value without a calculator: $\sin ^{-1}\left(-\frac{1}{2}\right)$

Find the point on the right half of the unit circle whose y-coordinate is $-1 / 2$ and draw a reference triangle. Recognize this as a special ratio, and the angle in the interval $[-\pi / 2, \pi / 2]$ whose \sin is $-1 / 2$ is $-\pi / 6$.

Example Evaluate $\sin ^{-1} \boldsymbol{x}$ Without a Calculator

Find the exact value without a calculator: $\sin ^{-1}\left(\sin \left(\frac{\pi}{10}\right)\right)$.

Example Evaluate $\sin ^{-1} \boldsymbol{x}$ Without a Calculator

Find the exact value without a calculator: $\sin ^{-1}\left(\sin \left(\frac{\pi}{10}\right)\right)$.

Draw an angle $\pi / 10$ in standard position and mark its y-coordinate on the y-axis. The angle in the interval $[-\pi / 2, \pi / 2]$ whose sine is this number is $\pi / 10$.
Therefore, $\sin ^{-1}\left(\sin \left(\frac{\pi}{10}\right)\right)=\frac{\pi}{10}$.

Inverse Cosine (Arccosine Function)

$[-1,4]$ by [$-1.4,1.4]$
(a)

$[-2,2]$ by $[-1,3.5]$
(b)

Inverse Cosine (Arccosine Function)

The unique angle y in the interval $[0, \pi]$ such that $\cos y=x$ is the inverse cosine (or arccosine) of x, denoted $\cos ^{\check{\mathbf{d}} \boldsymbol{x}}$ or $\arccos \boldsymbol{x}$.
The domain of $y=\cos ^{-1} x$ is $[-1,1]$ and the range is $[0, \pi]$.

Inverse Tangent Function (Arctangent Function)

$[-3,3]$ by $[-2,2]$
(a)

$[-4,4]$ by $[-2.8,2.8]$
(b)

Inverse Tangent Function (Arctangent Function)

The unique angle y in the interval $(-\pi / 2, \pi / 2)$ such that $\tan y=x$ is the inverse tangent (or arctangent) of x, denoted $\boldsymbol{\operatorname { t a n }}^{\boldsymbol{d}} \boldsymbol{x}$ or $\boldsymbol{\operatorname { a r c t a n }} \boldsymbol{x}$.

The domain of $y=\tan ^{-1} x$ is $(-\infty, \infty)$ and the range is $(-\pi / 2, \pi / 2)$.

End Behavior of the Tangent Function

$[-3,3]$ by $[-2,2]$
(a)

$[-4,4]$ by $[-2.8,2.8]$
(b)

Composing Trigonometric and Inverse Trigonometric Functions

The following equations are always true whenever they are defined:
$\sin \left(\sin ^{-1}(x)\right)=x \quad \cos \left(\cos ^{-1}(x)\right)=x \quad \tan \left(\tan ^{-1}(x)\right)=x$

The following equations are only true for x values in the "restricted" domains of \sin , \cos, and tan:
$\sin ^{-1}(\sin (x))=x \quad \cos ^{-1}(\cos (x))=x \quad \tan ^{-1}(\tan (x))=x$

Example Composing Trig Functions with Arcsine

Compose each of the six basic trig functions with $\cos ^{-1} x$ and reduce the composite function to an algebraic expression involving no trig functions.

Example Composing Trig Functions

 with Arcsine

Use the triangle to find the required ratios:
$\left.\sin \left(\cos ^{-1} x\right)\right)=\sqrt{1-x^{2}}$
$\left.\cos \left(\cos ^{-1} x\right)\right)=x$

$$
\begin{aligned}
& \left.\csc \left(\cos ^{-1} x\right)\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \left.\sec \left(\cos ^{-1} x\right)\right)=\frac{1}{x}
\end{aligned}
$$

$\left.\tan \left(\cos ^{-1} x\right)\right)=\frac{\sqrt{1-x^{2}}}{x}$

$$
\left.\cot \left(\cos ^{-1} x\right)\right)=\frac{x}{\sqrt{1-x^{2}}}
$$

Quick Review

State the sign (positive or negative) of the sine, cosine, and tangent in quadrant

1. I
2. III

Find the exact value.
3. $\cos \frac{\pi}{6}$
4. $\tan \frac{4 \pi}{3}$
5. $\sin -\frac{11 \pi}{6}$

Quick Review Solutions

State the sign (positive or negative) of the sine, cosine, and tangent in quadrant

1. I $\quad+,+,+$
2. III -,--,

Find the exact value.
3. $\cos \frac{\pi}{6} \quad \sqrt{3} / 2$
4. $\tan \frac{4 \pi}{3} \quad \sqrt{3}$
5. $\sin -\frac{11 \pi}{6} \quad 1 / 2$

