 Trigonometric Functions

Graphs of

 Composite
What you'll learn about

- Combining Trigonometric and Algebraic Functions
- Sums and Differences of Sinusoids
- Damped Oscillation
... and why
Function composition extends our ability to model periodic phenomena like heartbeats and sound waves.

Example Combining the Cosine Function with x^{2}

Graph $y=(\cos x)^{2}$ and state whether the function appears to be periodic.

Example Combining the Cosine Function with \boldsymbol{x}^{2}

Graph $y=(\cos x)^{2}$ and state whether the function appears to be periodic.

The function appears to be periodic.

QuickTime ${ }^{\text {TM }}$ and a
decompressor
are needed to see this picture.

Example Combining the Cosine Function with \boldsymbol{x}^{2}

Graph $y=\cos \left(x^{2}\right)$ and state whether the function appears to be periodic.

Example Combining the Cosine Function with \boldsymbol{x}^{2}

Graph $y=\cos \left(x^{2}\right)$ and state whether the function appears to be periodic.

The function appears not to be periodic.

QuickTime ${ }^{\text {TM }}$ and a
decompressor
are needed to see this picture.

Example Adding a Sinusoid to a Linear Function

Graph $f(x)=\cos x-\frac{x}{3}$ and state its domain and range.

Example Adding a Sinusoid to a Linear Function

Graph $f(x)=\cos x-\frac{x}{3}$ and state its domain and range.
The function f is the sum of the functions $g(x)=\cos x$
and $h(x)=-\frac{x}{3}$.
Here's the graph of $f=g+h$.
Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$

Sums That Are Sinusoids Functions

$$
\text { If } \begin{aligned}
y_{1}= & a_{1} \sin \left(b\left(x-h_{1}\right)\right) \text { and } y_{2}=a_{2} \cos \left(b\left(x-h_{2}\right)\right) \text {, then } \\
& y_{1}+y_{2}=a_{1} \sin \left(b\left(x-h_{1}\right)\right)+a_{2} \cos \left(b\left(x-h_{2}\right)\right)
\end{aligned}
$$

is a sinusoid with period $2 \pi /|b|$.

Example Identifying a Sinusoid

Determine whether the following function is or is not a sinusoid.
$f(x)=3 \cos x+5 \sin x$

Example Identifying a Sinusoid

Determine whether the following function is or is not a sinusoid.
$f(x)=3 \cos x+5 \sin x$

Yes, since both functions in the sum have period 2π.

Example Identifying a Sinusoid

Determine whether the following function is or is not a sinusoid.
$f(x)=\cos 3 x+\sin 5 x$

Example Identifying a Sinusoid

Determine whether the following function is or is not a sinusoid.
$f(x)=\cos 3 x+\sin 5 x$

No, since $\cos 3 x$ has period $2 \pi / 3$ and $\sin 5 x$ has period $2 \pi / 5$.

Damped Oscillation

The graph of $y=f(x) \cos b x$ (or $y=f(x) \sin b x)$ oscillates between the graphs of $y=f(x)$ and $y=-f(x)$. When this reduces the amplitude of the wave, it is called damped oscillation. The factor $f(x)$ is called the damping factor.

Quick Review

State the domain and range of the function.

1. $f(x)=-3 \sin 2 x$
2. $f(x)=|x|+2$
3. $f(x)=2 \cos 3 x$
4. Describe the behavior of $y=e^{-3 x}$ as $x \rightarrow \infty$.
5. Find $f \circ g$ and $g \circ f$, given $f(x)=x^{2}+3$ and $g(x)=\sqrt{x}$

Quick Review Solutions

State the domain and range of the function.

1. $f(x)=-3 \sin 2 x$ Domain: $(-\infty, \infty)$ Range: $[-3,3]$
2. $f(x)=|x|+2 \quad$ Domain: $(-\infty, \infty)$ Range: $[2, \infty)$
3. $f(x)=2 \cos 3 x$ Domain: $(-\infty, \infty)$ Range: $[-2,2]$
4. Describe the behavior of $y=e^{-3 x}$ as $x \rightarrow \infty$. $\lim _{x \rightarrow \infty} e^{-3 x}=0$
5. Find $f \circ g$ and $g \circ f$, given $f(x)=x^{2}+3$ and $g(x)=\sqrt{x}$
$f \circ g=x+3 ; g \circ f=\sqrt{x^{2}+3}$
