
4.6 Graphs of Composite Trigonometric **Functions**

Copyright © 2011 Pearson, Inc.

What you'll learn about

- Combining Trigonometric and Algebraic Functions
- Sums and Differences of Sinusoids
- Damped Oscillation

... and why

Function composition extends our ability to model periodic phenomena like heartbeats and sound waves.

Graph $y = (\cos x)^2$ and state whether the function appears to be periodic.

Graph $y = (\cos x)^2$ and state whether the function appears to be periodic.

The function appears to be periodic.

QuickTime[™] and a decompressor are needed to see this picture.

Copyright © 2011 Pearson, Inc.

Graph $y = \cos(x^2)$ and state whether the function

appears to be periodic.

Graph $y = \cos(x^2)$ and state whether the function appears to be periodic.

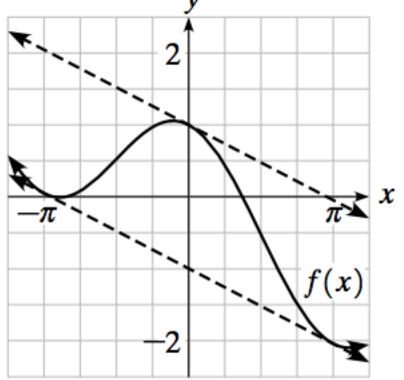
The function appears not to be periodic.

QuickTime[™] and a decompressor are needed to see this picture.

Copyright © 2011 Pearson, Inc.

Example Adding a Sinusoid to a Linear Function

Graph $f(x) = \cos x - \frac{x}{3}$ and state its domain and range.


Example Adding a Sinusoid to a Linear Function

Graph $f(x) = \cos x - \frac{x}{3}$ and state its domain and range.

The function f is the sum of the functions $g(x) = \cos x$

and $h(x) = -\frac{x}{3}$. Here's the graph of f = g + h. Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

Sums That Are Sinusoids Functions

If
$$y_1 = a_1 \sin(b(x - h_1))$$
 and $y_2 = a_2 \cos(b(x - h_2))$, then
 $y_1 + y_2 = a_1 \sin(b(x - h_1)) + a_2 \cos(b(x - h_2))$
is a sinusoid with period $2\pi/|b|$.

Determine whether the following function is or is not a sinusoid.

 $f(x) = 3\cos x + 5\sin x$

Determine whether the following function is or is not a sinusoid.

 $f(x) = 3\cos x + 5\sin x$

Yes, since both functions in the sum have period 2π .

Copyright © 2011 Pearson, Inc.

Determine whether the following function is or is not a sinusoid.

 $f(x) = \cos 3x + \sin 5x$

Determine whether the following function is or is not a sinusoid. $f(x) = \cos 3x + \sin 5x$

No, since $\cos 3x$ has period $2\pi/3$ and $\sin 5x$ has period $2\pi/5$.

Damped Oscillation

The graph of $y = f(x)\cos bx$ (or $y = f(x)\sin bx$) oscillates between the graphs of y = f(x) and y = -f(x). When this reduces the amplitude of the wave, it is called **damped oscillation**. The factor f(x) is called the **damping factor**.

Quick Review

- State the domain and range of the function.
- $1.f(x) = -3\sin 2x$
- 2.f(x) = |x| + 2
- $3.f(x) = 2\cos 3x$
- 4. Describe the behavior of $y = e^{-3x}$ as $x \to \infty$.
- 5. Find f Og and g Of, given $f(x) = x^2 + 3$ and $g(x) = \sqrt{x}$

Quick Review Solutions

State the domain and range of the function.

1. $f(x) = -3\sin 2x$ Domain: $(-\infty, \infty)$ Range: [-3, 3]2. f(x) = |x| + 2 Domain: $(-\infty, \infty)$ Range: $[2, \infty)$ $3. f(x) = 2\cos 3x$ Domain: $(-\infty, \infty)$ Range: [-2, 2]4. Describe the behavior of $y = e^{-3x}$ as $x \to \infty$. $\lim e^{-3x} = 0$ 5. Find f Og and g Of, given $f(x) = x^2 + 3$ and $g(x) = \sqrt{x}$ $f \circ g = x + 3; g \circ f = \sqrt{x^2 + 3}$