4.4

Graphs of Sine and Cosine: Sinusoids

What you'll learn about

- The Basic Waves Revisited
- Sinusoids and Transformations
- Modeling Periodic Behavior with Sinusoids

... and why

Sine and cosine gain added significance when used to model waves and periodic behavior.

Sinusoid

A function is a **sinusoid** if it can be written in the form $f(x) = a \sin(bx + c) + d$ where *a*, *b*, *c*, and *d* are constants and neither *a* nor *b* is 0.

Amplitude of a Sinusoid

The **amplitude** of the sinusoid $f(x) = a \sin(bx + c) + d$ is |a|. Similarly, the amplitude of $f(x) = a \cos(bx + c) + d$ is |a|. Graphically, the amplitude is half the height of the wave.

Period of a Sinusoid

The **period** of the sinusoid $f(x) = a \sin(bx + c) + d$ is $2\pi/|b|$. Similarly, the period of $f(x) = a \cos(bx + c) + d$ is $2\pi/|b|$. Graphically, the period is the length of one full cycle of the wave.

Example Horizontal Stretch or Shrink and Period

Find the period of $y = \sin\left(\frac{x}{2}\right)$ and use the language of

transformations to describe how the graph relates to $y = \sin x$.

Example Horizontal Stretch or Shrink and Period Find the period of $y = sin\left(\frac{x}{2}\right)$ and use the language of

transformations to describe how the graph relates to $y = \sin x$.

The period is
$$\frac{2\pi}{\frac{1}{2}} = 4\pi$$
. The graph of $y = \sin\left(\frac{x}{2}\right)$

is a horizontal stretch of $y = \sin x$ by a factor of 2.

Copyright © 2011 Pearson, Inc.

Slide 4.4 - 7

Frequency of a Sinusoid

The **frequency** of the sinusoid $f(x) = a \sin(bx + c) + d$ is $|b|/2\pi$. Similarly, the frequency of $f(x) = a \cos(bx + c) + d$ is $|b|/2\pi$. Graphically, the frequency is the number of complete cycles the wave completes in a unit interval.

Construct a sinusoid with period $\pi/3$ and amplitude 4 that goes through (2,0).

Construct a sinusoid with period $\pi/3$ and amplitude 4 that goes through (2,0).

To find the coefficient of *x*, set $2\pi/|b| = \pi/3$ and solve for *b*.

Find $b = \pm 6$. Arbitrarily choose b = 6.

For the amplitude set |a| = 4. Arbitrarily choose a = 4. The graph contains (2,0) so shift the function 2 units to the right.

$$y = 4\sin(6(x-2)) = 4\sin(6x-12).$$

Copyright © 2011 Pearson, Inc.

Slide 4.4 - 10

Find the frequency of the function $f(x) = -\frac{1}{3}\cos 5x$ and

interpret its meaning graphically. Sketch the graph in the

window
$$\left[-\frac{2\pi}{5},\frac{2\pi}{5}\right]$$
 by $\left[-\frac{1}{3},\frac{1}{3}\right]$.

The frequency is $5 \div 2\pi = \frac{5}{2\pi}$.

This is the reciprocal of the period, which is $2\pi/5$.

The graph completes one cycle per interval of length $2\pi/5$.

Graphs of Sinusoids

The graphs of $y = a \sin(b(x-h)) + k$ and $y = a\cos(b(x - h)) + k$ (where $a \neq 0$ and $b \neq 0$) have the following characteristics: amplitude = |a|; period = $\frac{2\pi}{|b|}$; frequency = $\frac{|b|}{2\pi}$.

Graphs of Sinusoids

When complared to the graphs of $y = a \sin bx$ and $y = a \cos bx$, respectively, they also have the following characteristics: a phase shift of *h*; a vertical translation of *k*.

Constructing a Sinusoidal Model using Time

1. Determine the maximum value *M* and minimum value *m*. The amplitude *A* of the sunusoid will be $A = \frac{M-m}{2}$, and the vertical shift will be $C = \frac{M+m}{2}$.

2. Determine the period *p*, the time interval of a single cycle of the periodic function. The horizontal shrink (or stretch) will be $B = \frac{2\pi}{p}$.

Constructing a Sinusoidal Model using Time

3. Choose an appropriate sinusoid based on behavior at some given time T. For example, at time T: $f(t) = A\cos(B(t - T)) + C$ attains a maximum value; $f(t) = -A\cos(B(t - T)) + C$ attains a minimum value; $f(t) = A \sin(B(t - T)) + C$ is halfway between a minimum and a maximum value; $f(t) = -A\sin(B(t - T)) + C$ is halfway between a maximum and a minimum value.

Quick Review

State the sign (positive or negative) of the function in each quadrant.

- 1. $\sin x$
- 2. $\cot x$

Give the radian measure of the angle.

- 3.150°
- 4. −135°

5. Find a transformation that will transform the graph

of
$$y_1 = \sqrt{x}$$
 to the graph of $y_2 = 2\sqrt{x}$.

Quick Review Solutions

State the sign (positive or negative) of the function in each quadrant.

- 1. $\sin x + +, -, -, -$
- 2. cot x +, -, +, -

Give the radian measure of the angle.

- 3. $150^{\circ} 5\pi/6$
- 4. -135° $-3\pi/4$

5. Find a transformation that will transform the graph of $y_1 = \sqrt{x}$ to the graph of $y_2 = 2\sqrt{x}$. vertically stretch by 2