

Graphs of

 Sine and Cosine:Sinusoids

What you'll learn about

- The Basic Waves Revisited
- Sinusoids and Transformations
- Modeling Periodic Behavior with Sinusoids
... and why
Sine and cosine gain added significance when used to model waves and periodic behavior.

Sinusoid

A function is a sinusoid if it can be written in the form $f(x)=a \sin (b x+c)+d$ where a, b, c, and d are constants and neither a nor b is 0 .

Amplitude of a Sinusoid

The amplitude of the sinusoid $f(x)=a \sin (b x+c)+d$ is $|a|$. Similarly, the amplitude of $f(x)=a \cos (b x+c)+d$ is $|a|$.
Graphically, the amplitude is half the height of the wave.

Period of a Sinusoid

The period of the sinusoid $f(x)=a \sin (b x+c)+d$ is $2 \pi /|b|$. Similarly, the period of $f(x)=a \cos (b x+c)+d$ is $2 \pi /|b|$.
Graphically, the period is the length of one full cycle of the wave.

Example Horizontal Stretch or Shrink and Period

Find the period of $y=\sin \left(\frac{x}{2}\right)$ and use the language of transformations to describe how the graph relates to $y=\sin x$.

Example Horizontal Stretch or Shrink and Period

Find the period of $y=\sin \left(\frac{x}{2}\right)$ and use the language of transformations to describe how the graph relates to $y=\sin x$.

The period is $\frac{2 \pi}{\frac{1}{2}}=4 \pi$. The graph of $y=\sin \left(\frac{x}{2}\right)$
is a horizontal stretch of $y=\sin x$ by a factor of 2 .

Frequency of a Sinusoid

The frequency of the sinusoid $f(x)=a \sin (b x+c)+d$ is $|b| / 2 \pi$.
Similarly, the frequency of $f(x)=a \cos (b x+c)+d$ is $|b| / 2 \pi$.
Graphically, the frequency is the number of complete cycles the wave completes in a unit interval.

Example Combining a Phase Shift with a Period Change

Construct a sinusoid with period $\pi / 3$ and amplitude 4 that goes through $(2,0)$.

Example Combining a Phase Shift with a Period Change

Construct a sinusoid with period $\pi / 3$ and amplitude 4 that goes through $(2,0)$.

To find the coefficient of x, set $2 \pi /|b|=\pi / 3$ and solve for b.
Find $b= \pm 6$. Arbitrarily choose $b=6$.
For the amplitude set $|a|=4$. Arbitrarily choose $a=4$.
The graph contains $(2,0)$ so shift the function 2 units to the right.

$$
y=4 \sin (6(x-2))=4 \sin (6 x-12) .
$$

Example Combining a Phase Shift with a Period Change

Find the frequency of the function $f(x)=-\frac{1}{3} \cos 5 x$ and interpret its meaning graphically. Sketch the graph in the
window $\left[-\frac{2 \pi}{5}, \frac{2 \pi}{5}\right]$ by $\left[-\frac{1}{3}, \frac{1}{3}\right]$.

Example Combining a Phase Shift with a Period Change

The frequency is $5 \div 2 \pi=\frac{5}{2 \pi}$.
This is the reciprocal of the period, which is $2 \pi / 5$.
The graph completes one cycle per interval of length $2 \pi / 5$.

$$
\begin{aligned}
& \sqrt{4}\left[-\frac{2 \pi}{5}, \frac{2 \pi}{5}\right] \text { by }\left[-\frac{1}{3}, \frac{1}{3}\right]
\end{aligned}
$$

Graphs of Sinusoids

The graphs of $y=a \sin (b(x-h))+k$ and $y=a \cos (b(x-h))+k($ where $a \neq 0$ and
$b \neq 0$) have the following characteristics:

$$
\begin{aligned}
& \text { amplitude }=|a| \\
& \text { period }=\frac{2 \pi}{|b|} \\
& \text { frequency }=\frac{|b|}{2 \pi}
\end{aligned}
$$

Graphs of Sinusoids

When complared to the graphs of $y=a \sin b x$ and $y=a \cos b x$, respectively, they also have the following characteristics:
a phase shift of $h ; \quad$ a vertical translation of k.

Constructing a Sinusoidal Model using

 Time1. Determine the maximum value M and minimum value m. The amplitude A of the sunusoid will be
$A=\frac{M-m}{2}$, and the vertical shift will be $C=\frac{M+m}{2}$.
2. Determine the period p, the time interval of a single cycle of the periodic function. The horizontal shrink (or stretch) will be $B=\frac{2 \pi}{p}$.

Constructing a Sinusoidal Model using

 Time3. Choose an appropriate sinusoid based on behavior at some given time T. For example, at time T : $f(t)=A \cos (B(t-T))+C$ attains a maximum value; $f(t)=-A \cos (B(t-T))+C$ attains a minimum value; $f(t)=A \sin (B(t-T))+C$ is halfway between a minimum and a maximum value;
$f(t)=-A \sin (B(t-T))+C$ is halfway between a maximum and a minimum value.

Quick Review

State the sign (positive or negative) of the function in each quadrant.

1. $\sin x$
2. $\cot x$

Give the radian measure of the angle.
3. 150°
4. -135°
5. Find a transformation that will transform the graph

$$
\text { of } y_{1}=\sqrt{x} \text { to the graph of } y_{2}=2 \sqrt{x} .
$$

Quick Review Solutions

State the sign (positive or negative) of the function in each quadrant.

1. $\sin x \quad+,+,-,-$
2. $\cot x \quad+,-,+,-$

Give the radian measure of the angle.
3. $150^{\circ} 5 \pi / 6$
4. $-135^{\circ}-3 \pi / 4$
5. Find a transformation that will transform the graph
of $y_{1}=\sqrt{x}$ to the graph of $y_{2}=2 \sqrt{x}$. vertically stretch by 2

