4.1

Angles and Their Measures

Copyright © 2011 Pearson, Inc.

What you'll learn about

- The Problem of Angular Measure
- Degrees and Radians
- Circular Arc Length
- Angular and Linear Motion

... and why

Angles are the domain elements of the trigonometric functions.

 θ is a central angle intercepting a circular arc of length *a*. The measure can be in degrees (a circle measures 360° once around) or in radians, which measures the length of arc *a*.

In navigation, the **course** or **bearing** of an object is sometimes given as the angle of the **line of travel** measured clockwise from due north.

Radian

A central angle of a circle has measure 1 **radian** if it intercepts an arc with the same length as the radius.

Degree-Radian Conversion

To convert radians to degrees, multiply by 180° π radians To convert degrees to radians, multiply by π radians 180°

Copyright © 2011 Pearson, Inc.

Slide 4.1 - 6

- a. How many radians are in 135°?
- b. How many degrees are in $\frac{7\pi}{6}$ radians?
- c. Find the length of an arc intercepted by a central angle of 1/4 radian in a circle of radius 3 in.

a. How many radians are in 135°?

Use the conversion factor
$$\frac{\pi \text{ radians}}{180^{\circ}}$$
.
 $135^{\circ} \frac{\pi \text{ radians}}{180^{\circ}} = \frac{135\pi}{180} \text{ radians} = \frac{3\pi}{4} \text{ radians}$

b. How many degrees are in $\frac{7\pi}{6}$ radians?

Use the conversion factor $\frac{180^{\circ}}{\pi \text{ radians}}$. $\left(\frac{7\pi}{6}\right)\left(\frac{180^{\circ}}{\pi \text{ radians}}\right) = \frac{1260^{\circ}}{6} = 210^{\circ}$

c. Find the length of an arc intercepted by a central angle of 1/4 radian in a circle of radius 3 in.

A central angle of 1 radian intercepts an arc length of 1 radius, which is 3 in. So a central angle of 1/4 radian intercepts an arc of length 1/4 radius, which is 3/4 in.

Arc Length Formula (Radian Measure)

If θ is a central angle in a circle of radius *r*, and if θ is measured in radians, then the length *s* of the intercepted arc is given by

 $s = r\theta$.

Arc Length Formula (Degree Measure)

If θ is a central angle in a circle of radius *r*, and if θ is measured in degrees, then the length *s* of the intercepted arc is given by

$$s = \frac{\pi r \theta}{180}.$$

Example Perimeter of a Pizza Slice

Find the perimeter of a 30° slice of a large 8 in. radius pizza.

Example Perimeter of a Pizza Slice

Find the perimeter of a 30° slice of a large 8 in. radius pizza.

Let *s* equal the arc length of the pizza's curved edge. $s = \frac{\pi(8)(30)}{180} = \frac{240\pi}{180} \approx 4.2 \text{ in.}$

P = 8 in. + 8 in. + s in.

P = 20.2 in.

Copyright © 2011 Pearson, Inc.

Angular and Linear Motion

- Angular speed is measured in units like revolutions per minute.
- Linear speed is measured in units like miles per hour.

Nautical Mile

A **nautical mile** (naut mi) is the length of 1 minute of arc along Earth's equator.

Distance Conversions

1 statute mile ≈ 0.87 nautical mile 1 nautical mile ≈ 1.15 statute mile

Slide 4.1 - 17

Quick Review

- 1. Find the circumference of the circle with a radius of 4.5 in.
- 2. Find the radius of the circle with a circumference of 14 cm.
- 3. Given $s = r\theta$. Find s if r = 2.2 cm and $\theta = 4$ radians.
- 4. Convert 65 miles per hour into feet per second.
- 5. Convert 9.8 feet per second to miles per hour.

Quick Review Solutions

- 1. Find the circumference of the circle with a radius of 4.5 in. 9π in
- 2. Find the radius of the circle with a circumference of 14 cm. $7 / \pi$ cm
- 3. Given $s = r\theta$. Find s if r = 2.2 cm and $\theta = 4$ radians. 8.8 cm
- 4. Convert 65 miles per hour into feet per second. 95.3 feet per second
- 5. Convert 9.8 feet per second to miles per hour.

6.681 miles per hour

Copyright © 2011 Pearson, Inc.