3.6

Mathematics of Finance

Wesley

What you'll learn about

- Interest Compounded Annually
- Interest Compounded k Times per Year
- Interest Compounded Continuously
- Annual Percentage Yield
- Annuities - Future Value
- Loans and Mortgages - Present Value
... and why
The mathematics of finance is the science of letting your money work for you - valuable information indeed!

Interest Compounded Annually

If a principal P is invested at a fixed annual interest rate r, calculated at the end of each year, then the value of the investment after n years is

$$
A=P(1+r)^{n},
$$

where r is expressed as a decimal.

Interest Compounded k Times per Year

Suppose a principal P is invested at an annual rate r compounded k times a year for t years. Then r / k is the interest rate per compounding period, and $k t$ is the number of compounding periods. The amount
A in the account after t years is $A=P\left(1+\frac{r}{k}\right)^{k t}$.

Example Compounding Monthly

Suppose Paul invests \$400 at 8\% annual interest compounded monthly. Find the value of the investment after 5 years.

Example Compounding Monthly

Suppose Paul invests $\$ 400$ at 8% annual interest compounded monthly. Find the value of the investment after 5 years.

$$
\text { Let } P=400, r=0.08, k=12, \text { and } t=5,
$$

$$
A=P\left(1+\frac{r}{k}\right)^{k t}
$$

$$
=400\left(1+\frac{0.08}{12}\right)^{12(5)}
$$

So the value of Paul's investment after 5

$$
=595.9382 \ldots
$$

years is $\$ 595.94$.

Compound Interest - Value of an Investment

Suppose a principal P is invested at a fixed annual interest rate r. The value of the investment after t years is

- $A=P\left(1+\frac{r}{k}\right)^{k t}$ when interest compounds
k times per year,
- $A=P e^{r t} \quad$ when interest compounds continuously.

Example Compounding Continuously

Suppose Paul invests $\$ 400$ at 8% annual interest compounded continuously. Find the value of his investment after 5 years.

Example Compounding Continuously

Suppose Paul invests $\$ 400$ at 8% annual interest compounded continuously. Find the value of his investment after 5 years.

$$
\begin{aligned}
P & =400, r=0.08, \text { and } t=5, \\
A & =P e^{r t} \\
& =400 e^{0.08(5)} \\
& =596.7298 \ldots
\end{aligned}
$$

So Paul's investment is worth $\$ 596.73$.

Annual Percentage Yield

A common basis for comparing investments is the annual percentage yield (APY) - the percentage rate that, compounded annually, would yield the same return as the given interest rate with the given compounding period.

Example Computing Annual Percentage Yield

Suppose you invest $\$ 1500$ at 6.25% annual interest compounded monthly. What is the equivalent APY?

Example Computing Annual Percentage Yield

Suppose you invest $\$ 1500$ at 6.25% annual interest compounded monthly. What is the equivalent APY?

Let $x=$ the equivalent APY. The value after one year is $A=1500(1+x)$.
$1500(1+x)=1500\left(1+\frac{0.0625}{12}\right)^{12}$
$(1+x)=\left(1+\frac{0.0625}{12}\right)^{12}$

Example Computing Annual Percentage Yield

Suppose you invest $\$ 1500$ at 6.25% annual interest compounded monthly. What is the equivalent APY?

$$
\begin{aligned}
& (1+x)=\left(1+\frac{0.0625}{12}\right)^{12} \\
& x=\left(1+\frac{0.0625}{12}\right)^{12}-1 \approx 0.0643
\end{aligned}
$$

The annual percentage yield is 6.43%.

Future Value of an Annuity

The future value $F V$ of an annuity consisting of n equal periodic payments of R dollars at an interest rate i per compounding period (payment interval) is

$$
F V=R \frac{(1+i)^{n}-1}{i}
$$

Present Value of an Annuity

The present value $P V$ of an annuity consisting of n equal payments of R dollars at an interest rate i per period (payment interval) is

$$
P V=R \frac{1-(1+i)^{-n}}{i}
$$

Quick Review

1. Find 3.4% of 70 .
2. What is one-third of 6.25% ?
3. 30 is what percent of 150 ?
4. 28 is 35% of what number?
5. How much does Allyson have at the end of 1 year if she invests $\$ 400$ at 3% simple interest?

Quick Review Solutions

1. Find 3.4% of 70.2 .38
2. What is one-third of 6.25% ? $0.0208 \overline{3}$
3. 30 is what percent of 150 ? 20%
4. 28 is 35% of what number? 80
5. How much does Allyson have at the end of 1 year if she invests $\$ 400$ at 3% simple interest? $\$ 412$

Chapter Test

1. State whether $f(x)=e^{4-x}+2$ is an exponential growth function or an exponential decay function, and describe its end behavior using limits. exponential decay; $\lim _{x \rightarrow-\infty} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=2$
2. Find the exponential function that satisfies the conditions: Initial height $=18 \mathrm{~cm}$, doubling every 3 weeks.

$$
f(x)=18 \cdot 2^{x / 21}
$$

3. Find the logistic function that satisfies the conditions: Initial value $=12$, limit to growth $=30$, passing through $(2,20) . \quad f(x) \approx 30 /\left(1+1.5 e^{-0.55 x}\right)$

Chapter Test

4. Describe how to transform the graph of $y=\log _{2} x$ into the graph of $h(x)=-\log _{2}(x-1)+2$. translate right 1 unit, relect across the x-axis, translate up 2 units.
5. Solve for $x: \quad 1.05^{x}=3 . \quad x \approx 22.5171$
6. Solve for $x: \ln (3 x+4)-\ln (2 x+1)=5 \quad x \approx-0.4915$
7. Find the amount A accumulated after investing a principal P for t years at an interest rate r compounded continuously. $\quad A=P e^{r t}$

Chapter Test

8. The population of Preston is 89,000 and is decreasing by 1.8% each year.
(a) Write a function that models the population as a function of time t.
$P(t)=89,000(0.982)^{t}$
(b) Predict when the population will be 50,000 ?
31.74 years

Chapter Test

9. The half-life of a certain substance is 1.5 sec .

The initial amount of substance is S_{0} grams.
(a) Express the amount of substance remaining as
a function of time $t \cdot S(t)=S_{0}\left(\frac{1}{2}\right)^{t / 1.5}$
(b) How much of the substance is left after 1.5 sec ? $S_{0} / 2$
(c) How much of the substance is left after 3 sec ? $S_{0} / 4$
(d) Determine S_{0} if there was 1 g left after 1 min .
$1,009,500$ metric tons

Chapter Test

10. If Joenita invests $\$ 1500$ into a retirement account with an 8% interest rate compounded quarterly, how long will it take this single payment to grow to $\$ 3750$?
11.57 years
