

Solving and Modeling

What you'll learn about

- Solving Exponential Equations
- Solving Logarithmic Equations
- Orders of Magnitude and Logarithmic Models
- Newton's Law of Cooling
- Logarithmic Re-expression
... and why
The Richter scale, pH , and Newton's Law of Cooling, are among the most important uses of logarithmic and exponential functions.

One-to-One Properties

For any exponential function $f(x)=b^{x}$,

- If $b^{u}=b^{v}$, then $u=v$.

For any logarithmic function $f(x)=\log _{b} x$,

- If $\log _{b} u=\log _{b} v$, then $u=v$.

Example Solving an Exponential Equation Algebraically

Solve $40(1 / 2)^{x / 2}=5$.

Example Solving an Exponential Equation Algebraically

Solve $40(1 / 2)^{x / 2}=5$.

$$
\begin{array}{ll}
40(1 / 2)^{x / 2}=5 & \\
(1 / 2)^{x / 2}=\frac{1}{8} & \text { divide by } 40 \\
\left(\frac{1}{2}\right)^{x / 2}=\left(\frac{1}{2}\right)^{3} & \frac{1}{8}=\left(\frac{1}{2}\right)^{3} \\
x / 2=3 & \text { one-to-one property } \\
x=6 &
\end{array}
$$

Example Solving a Logarithmic Equation

Solve $\log x^{3}=3$.

Example Solving a Logarithmic Equation

Solve $\log x^{3}=3$.

$$
\begin{aligned}
& \log x^{3}=3 \\
& \log x^{3}=\log 10^{3} \\
& x^{3}=10^{3} \\
& x=10
\end{aligned}
$$

Example Solving a Logarithmic Equation

Solve $\log (2 x+1)+\log (x+3)=\log (8-2 x)$

Example Solving a Logarithmic Equation

Solve $\log (2 x+1)+\log (x+3)=\log (8-2 x)$
Solve Graphically
To use the x-intercept method, we rewrite the equation
$\log (2 x+1)+\log (x+3)-\log (8-2 x)=0$
and graph $f(x)=\log (2 x+1)+\log (x+3)-\log (8-2 x)$.
The x-intercept is $x=\frac{1}{2}$,
which is a solution to the equation.

$$
[-2,6] \text { by }[-5,5]
$$

Example Solving a Logarithmic Equation

Solve $\log (2 x+1)+\log (x+3)=\log (8-2 x)$
Confirm Algebraically

$$
\begin{aligned}
\log (2 x+1)+\log (x+3) & =\log (8-2 x) \\
\log [(2 x+1)(x+3)] & =\log (8-2 x) \\
(2 x+1)(x+3) & =(8-2 x) \\
2 x^{2}+9 x-5 & =0 \\
(2 x-1)(x+5) & =0 \quad x=\frac{1}{2} \quad \text { or } \quad x=-5
\end{aligned}
$$

Notice $x=-5$ is an extraneous solution. So the only solution

$$
\text { is } x=\frac{1}{2} \text {. }
$$

Orders of Magnitude

The common logarithm of a positive quantity is its order of magnitude.

Orders of magnitude can be used to compare any like quantities:

- A kilometer is 3 orders of magnitude longer than a meter.
- A dollar is 2 orders of magnitude greater than a penny.
- New York City with 8 million people is 6 orders of magnitude bigger than Earmuff Junction with a population of 8 .

Richter Scale

The Richter scale magnitude R of an earthquake is
$R=\log \frac{a}{T}+B$, where a is the amplitude in
micrometers ($\mu \mathrm{m}$) of the vertical ground motion at the receiving station, T is the period of the associated seismic wave in seconds, and B accounts for the weakening of the seismic wave with increasing distance from the epicenter of the earthquake.

pH

In chemistry, the acidity of a water-based solution is measured by the concentration of hydrogen ions in the solution (in moles per liter). The hydrogen-ion concentration is written $\left[\mathrm{H}^{+}\right]$. The measure of acidity used is $\mathbf{p H}$, the opposite of the common \log of the hydrogen-ion concentration:

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

More acidic solutions have higher hydrogen-ion concentrations and lower pH values.

Newton's Law of Cooling

An object that has been heated will cool to the temperature of the medium in which it is placed. The temperature T of the object at time t can be modeled by
$T(t)=T_{m}+\left(T_{0}-T_{m}\right) e^{-k t}$
for an appropriate value of k, where
$T_{m}=$ the temperature of the surrounding medium,
$T_{0}=$ the temperature of the object.
This model assumes that the surrounding medium maintains a constant temperature.

Example Newton's Law of Cooling

A hard-boiled egg at temperature $100^{\circ} \mathrm{C}$ is placed in $15^{\circ} \mathrm{C}$ water to cool. Five minutes later the temperature of the egg is $55^{\circ} \mathrm{C}$. When will the egg be $25^{\circ} \mathrm{C}$?

Example Newton's Law of Cooling

A hard-boiled egg at temperature $100^{\circ} \mathrm{C}$ is placed in $15^{\circ} \mathrm{C}$ water to cool. Five minutes later the temperature of the egg is $55^{\circ} \mathrm{C}$. When will the egg be $25^{\circ} \mathrm{C}$?

Given $T_{0}=100, T_{m}=15$, and $T(5)=55$.
$T(t)=T_{m}+\left(T_{0}-T_{m}\right) e^{-k t} \quad k=0.1507 \ldots$
$55=15+85 e^{-5 k} \quad$ Now find t when $T(t)=25$.
$40=85 e^{-5 k}$
$25=15+85 e^{-0.1507 t}$
$\left(\frac{40}{85}\right)=e^{-5 k}$
$\ln \left(\frac{40}{85}\right)=-5 k$

$$
\begin{aligned}
& 10=85 e^{-0.1507 t} \\
& \ln \left(\frac{10}{85}\right)=-0.1507 t \\
& t=14.2 \mathrm{~min} .
\end{aligned}
$$

Regression Models Related by Logarithmic Re-Expression

- Linear regression:

$$
\begin{aligned}
& y=a x+b \\
& y=a+b \ln x \\
& y=a \cdot b^{x} \\
& y=a \cdot x^{b}
\end{aligned}
$$

Exponential regression:
Power regression:

Three Types of Logarithmic Re-Expression

1. Natural Logarithmic Regression Re-expressed: $(x, y) \rightarrow(\ln x, y)$

$[0,7]$ by $[0,30]$
(x, y) data
(a)

$[0,2]$ by $[0,30]$
$(\ln x, y)=(u, y)$ data with
linear regression model

$$
y=a u+b
$$

(b)

Conclusion:
$y=a \ln x+b$ is the logarithmic regression model for the
(x, y) data.

Three Types of Logarithmic Re-Expression (cont'd)

2. Exponential Regression Re-expressed: $(x, y) \rightarrow(x, \ln y)$

Three Types of Logarithmic Re-Expression (cont'd)

3. Power Regression Re-expressed: $(x, y) \rightarrow(\ln x, \ln y)$

(a)

(b)

Conclusion:
$y=c\left(x^{a}\right)$, where $c=e^{b}$, is the power regression model for the (x, y) data.

Quick Review

Prove that each function in the given pair is the inverse of the other.

1. $f(x)=e^{3 x}$ and $g(x)=\ln \left(x^{1 / 3}\right)$
2. $f(x)=\log x^{2}$ and $g(x)=10^{x / 2}$

Write the number in scientific notation.
3. 123,400,000

Write the number in decimal form.
4. 5.67×10^{8}
5. 8.91×10^{-4}

Quick Review Solutions

Prove that each function in the given pair is the inverse of the other.

1. $f(x)=e^{3 x}$ and $g(x)=\ln \left(x^{1 / 3}\right) \quad f(g(x))=e^{3 \ln \left(x^{1 / 3}\right)}=e^{\ln (x)}=x$
2. $f(x)=\log x^{2}$ and $g(x)=10^{x / 2} \quad f(g(x))=\log \left(10^{x / 2}\right)^{2}=\log 10^{x}=x$

Write the number in scientific notation.
3. $123,400,000 \quad 1.234 \times 10^{8}$

Write the number in decimal form.
4. $5.67 \times 10^{8} \quad 567,000,000$
5. $8.91 \times 10^{-4} \quad 0.000891$

