3.4 Properties of Logarithmic Functions

Copyright © 2011 Pearson, Inc.

What you'll learn about

- Properties of Logarithms
- Change of Base
- Graphs of Logarithmic Functions with Base *b*
- Re-expressing Data

... and why

The applications of logarithms are based on their many special properties, so learn them well.

Properties of Logarithms

Let *b*, *R*, and *S* be positve real numbers with $b \neq 1$, and *c* any real number.

- **Product rule**: $\log_b(RS) = \log_b R + \log_b S$
- Quotient rule:

$$\log_b \left(\frac{R}{S}\right) = \log_b R - \log_b S$$

• **Power rule**: $\log_b(R)^c = c \log_b R$

Example Proving the Product Rule for Logarithms

Prove $\log_b(RS) = \log_b R + \log_b S$.

Example Proving the Product Rule for Logarithms

Prove $\log_b(RS) = \log_b R + \log_b S$.

Let $x = \log_b R$ and $y = \log_b S$. The corresponding exponential statements are $b^x = R$ and $b^y = S$. Therefore,

 $RS = b^{x} \cdot b^{y}$ $RS = b^{x+y}$ $\log_{b}(RS) = x + y$ change to logarithmic form $\log_{b}(RS) = \log_{b} R + \log_{b} S$

Example Expanding the Logarithm of a Product

Assuming x is positive, use properties of logarithms to write $log(3x^5)$ as a sum of logarithms or multiple logarithms.

Example Expanding the Logarithm of a Product

Assuming x is positive, use properties of logarithms to write $log(3x^5)$ as a sum of logarithms or multiple logarithms.

$$\log(3x^5) = \log 3 + \log(x^5)$$
$$= \log 3 + 5\log x$$

Example Condensing a Logarithmic Expression

Assuming x is positive, write $3\ln x - \ln 2$ as a single logarithm.

Example Condensing a Logarithmic Expression

Assuming x is positive, write $3\ln x - \ln 2$ as a single logarithm.

$$3\ln x - \ln 2 = \ln x^3 - \ln 2$$
$$= \ln \left(\frac{x^3}{2}\right)$$

Slide 3.4 - 9

Change-of-Base Formula for Logarithms

For positive real numbers *a*, *b*, and *x* with $a \neq 1$ and $b \neq 1$, $\log_b x = \frac{\log_a x}{\log_a b}$.

Example Evaluating Logarithms by Changing the Base

Evaluate $\log_3 10$.

Copyright © 2011 Pearson, Inc.

Slide 3.4 - 11

Example Evaluating Logarithms by Changing the Base

Evaluate $\log_3 10$.

$$\log_3 10 = \frac{\log 10}{\log 3} = \frac{1}{\log 3} \approx 2.096$$

Example Transforming Logarithmic Graphs

Describe how to transform the graph of $f(x) = \ln x$

into the graph of each function.

Graph each function.

a. $g(x) = \ln x^2$ b. $h(x) = \log x$ c. $k(x) = \ln 3x$

Example Transforming Logarithmic Graphs

Describe how to transform the graph of $f(x) = \ln x$

into the graph of each function.

Graph each function.

a. $g(x) = \ln x^2$

Since $\ln x^2 = 2 \ln x$, the graph of $g(x) = \ln x^2$ is obtained by vertically stretching the graph of $f(x) = \ln x$ by a factor of 2.

[-2, 8] by [-5, 5]

Example **Transforming Logarithmic** Graphs

Describe how to transform the graph of $f(x) = \ln x$

into the graph of each function.

Graph each function.

b.
$$h(x) = \log x$$

Since $\log x = \frac{\ln x}{\ln 10}$, the graph
of $h(x) = \log x$ is obtained by
vertically shrinking the graph
of $f(x) = \ln x$ by a factor of $\frac{1}{\ln 10}$

[-2, 8] by [-5, 5]

of
$$f(x) = \ln x$$
 by a factor of $\frac{1}{\ln 10} \approx 0.43$

Example Transforming Logarithmic Graphs

Describe how to transform the graph of $f(x) = \ln x$

into the graph of each function.

Graph each function.

c. $k(x) = \ln 3x$

Since $\ln 3x = \ln 3 + \ln x$, the graph of $k(x) = \ln 3x$ is obtained by translating the graph of $f(x) = \ln x$ up by $\ln 3 \approx 1.10$ units.

[-2, 8] by [-5, 5]

Quick Review

Evaluate the expression without using a calculator.

- 1. $\log 10^3$
- 2. $\ln e^3$
- 3. $\log 10^{-2}$

Simplify the expression.

Quick Review Solutions

Evaluate the expression without using a calculator.

- 1. $\log 10^3$ 3
- 2. $\ln e^3$ 3
- 3. $\log 10^{-2}$ -2

Simplify the expression.

