3.4

Properties of Logarithmic Functions

What you'll learn about

- Properties of Logarithms
- Change of Base
- Graphs of Logarithmic Functions with Base b
- Re-expressing Data
... and why
The applications of logarithms are based on their many special properties, so learn them well.

Properties of Logarithms

Let b, R, and S be positve real numbers with $b \neq 1$, and c any real number.

- Product rule:

$$
\log _{b}(R S)=\log _{b} R+\log _{b} S
$$

- Quotient rule:

$$
\log _{b}\left(\frac{R}{S}\right)=\log _{b} R-\log _{b} S
$$

- Power rule:

$$
\log _{b}(R)^{c}=c \log _{b} R
$$

Example Proving the Product Rule for Logarithms

Prove $\log _{b}(R S)=\log _{b} R+\log _{b} S$.

Example Proving the Product Rule for Logarithms

Prove $\log _{b}(R S)=\log _{b} R+\log _{b} S$.
Let $x=\log _{b} R$ and $y=\log _{b} S$. The corresponding exponential statements are $b^{x}=R$ and $b^{y}=S$.
Therefore,
$R S=b^{x} \cdot b^{y}$
$R S=b^{x+y}$
$\log _{b}(R S)=x+y \quad$ change to logarithmic form $\log _{b}(R S)=\log _{b} R+\log _{b} S$

Example Expanding the Logarithm of a Product

Assuming x is positive, use properties of logarithms to write $\log \left(3 x^{5}\right)$ as a sum of logarithms or multiple logarithms.

Example Expanding the Logarithm of a Product

Assuming x is positive, use properties of logarithms to write $\log \left(3 x^{5}\right)$ as a sum of logarithms or multiple logarithms.

$$
\begin{aligned}
\log \left(3 x^{5}\right) & =\log 3+\log \left(x^{5}\right) \\
& =\log 3+5 \log x
\end{aligned}
$$

Example Condensing a Logarithmic Expression

Assuming x is positive, write $3 \ln x-\ln 2$ as a single logarithm.

Example Condensing a Logarithmic Expression

Assuming x is positive, write $3 \ln x-\ln 2$ as a single logarithm.

$$
\begin{aligned}
3 \ln x-\ln 2 & =\ln x^{3}-\ln 2 \\
& =\ln \left(\frac{x^{3}}{2}\right)
\end{aligned}
$$

Change-of-Base Formula for Logarithms

For positive real numbers a, b, and x with $a \neq 1$ and $b \neq 1$,

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Example Evaluating Logarithms by Changing the Base

Evaluate $\log _{3} 10$.

Example Evaluating Logarithms by Changing the Base

Evaluate $\log _{3} 10$.

$$
\log _{3} 10=\frac{\log 10}{\log 3}=\frac{1}{\log 3} \approx 2.096
$$

Example Transforming Logarithmic Graphs

Describe how to transform the graph of $f(x)=\ln x$ into the graph of each function.
Graph each function.
a. $g(x)=\ln x^{2}$
b. $\mathrm{h}(x)=\log x$
c. $\mathrm{k}(x)=\ln 3 x$

Example Transforming Logarithmic Graphs

Describe how to transform the graph of $f(x)=\ln x$ into the graph of each function.
Graph each function.
a. $g(x)=\ln x^{2}$

Since $\ln x^{2}=2 \ln x$, the graph of $g(x)=\ln x^{2}$ is obtained by vertically stretching the graph of $f(x)=\ln x$ by a factor of 2 .

$$
[-2,8] \text { by }[-5,5]
$$

Example Transforming Logarithmic Graphs

Describe how to transform the graph of $f(x)=\ln x$ into the graph of each function.
Graph each function.
b. $\mathrm{h}(x)=\log x$

Since $\log x=\frac{\ln x}{\ln 10}$, the graph of $h(x)=\log x$ is obtained by
 vertically shrinking the graph

$$
[-2,8] \text { by }[-5,5]
$$

of $f(x)=\ln x$ by a factor of $\frac{1}{\ln 10} \approx 0.43$

Example Transforming Logarithmic Graphs

Describe how to transform the graph of $f(x)=\ln x$ into the graph of each function.
Graph each function.
c. $\mathrm{k}(x)=\ln 3 x$

Since $\ln 3 x=\ln 3+\ln x$, the graph of $\mathrm{k}(x)=\ln 3 x$ is obtained by translating the graph of $f(x)=\ln x$ up by $\ln 3 \approx 1.10$ units.

$$
[-2,8] \text { by }[-5,5]
$$

Quick Review

Evaluate the expression without using a calculator.

1. $\log 10^{3}$
2. $\ln e^{3}$
3. $\log 10^{-2}$

Simplify the expression.
4. $\frac{x^{3} y^{-3}}{x^{-2} y^{2}}$
5. $\frac{\left(x^{2} y^{4}\right)^{1 / 2}}{2 x^{-3}}$

Quick Review Solutions

Evaluate the expression without using a calculator.

1. $\log 10^{3} \quad 3$
2. $\ln e^{3} \quad 3$
3. $\log 10^{-2} \quad-2$

Simplify the expression.
4. $\frac{x^{3} y^{-3}}{x^{-2} y^{2}} \quad \frac{x^{5}}{y^{5}}$
5. $\frac{\left(x^{2} y^{4}\right)^{1 / 2}}{2 x^{-3}} \quad \frac{x^{4} y^{2}}{2}$

