Logarithmic Functions and Their Graphs

3.3

What you'll learn about

- Inverses of Exponential Functions
- Common Logarithms Base 10
- Natural Logarithms Base e
- Graphs of Logarithmic Functions
- Measuring Sound Using Decibels

... and why

Logarithmic functions are used in many applications, including the measurement of the relative intensity of sounds.

Changing Between Logarithmic and Exponential Form

If x > 0 and $0 < b \neq 1$, then $y = \log_b(x)$ if and only if $b^y = x$.

Inverses of Exponential Functions

Basic Properties of Logarithms

For $0 < b \neq 1$, x > 0, and any real number y. $g \log_b 1 = 0$ because $b^0 = 1$. $g \log_b b = 1$ because $b^1 = b$. $g \log_b b^y = y$ because $b^y = b^y$. $g b^{\log_b x} = x$ because $\log_b x = \log_b x$.

An Exponential Function and Its Inverse

x	$f(x)=2^x$	x	$f^{-1}(x) = \log_2 x$
-3	1/8	1/8	-3
-2	1/4	1/4	-2
-1	1/2	1/2	-1
0	1	1	0
1	2	2	1
2	4	4	2
3	8	8	3

Common Logarithm – Base 10

- Logarithms with base 10 are called common logarithms.
- The common logarithm $\log_{10} x = \log x$.
- The common logarithm is the inverse of the exponential function $y = 10^x$.

Basic Properties of Common Logarithms

Let x and y be real numbers with x > 0. $g \log 1 = 0$ because $10^0 = 1$. $g \log 10 = 1$ because $10^1 = 10$. $g \log 10^y = y$ because $10^y = 10^y$. $g 10^{\log x} = x$ because $\log x = \log x$.

Example Solving Simple Logarithmic Equations

Solve the equation by changing it to exponential form.

 $\log x = 4$

Example Solving Simple Logarithmic Equations

Solve the equation by changing it to exponential form. $\log x = 4$

$$x = 10^4 = 10,000$$

Basic Properties of Natural Logarithms

Let x and y be real numbers with x > 0. $g \ln 1 = 0$ because $e^0 = 1$. $g \ln e = 1$ because $e^1 = e$. $g \ln e^y = y$ because $e^y = e^y$. $g e^{\ln x} = x$ because $\ln x = \ln x$.

Copyright © 2011 Pearson, Inc.

Slide 3.3 - 11

Graphs of the Common and Natural Logarithm

[-1, 5] by [-2, 2]

Copyright © 2011 Pearson, Inc.

Slide 3.3 - 12

Describe transformations that will transform $f(x) = \ln x$ to $g(x) = 2 - 3 \ln x$.

Describe transformations that will transform $f(x) = \ln x$

- to $g(x) = 2 3\ln x$.
- Solve Algebraically
- $g(x) = 2 3\ln x$ $= -3\ln x + 2$ = -f(x) + 2

So g can be obtained by reflecting the graph of f across the x-axis, stretching vertically by a factor of 3, and then shifting upward 2 units.

Describe transformations that will transform $f(x) = \ln x$

to $g(x) = 2 - 3 \ln x$.

a. Reflect over the *x*-axis to obtain $y = -\ln x$

b. Stretch vertically by a factor of 3 to obtain $y = -3 \ln x$

Describe transformations that will transform $f(x) = \ln x$ to $g(x) = 2 - 3 \ln x$.

c. Translate upward 2 units to obtain $y = -3\ln x + 2$

 $y = 2 - 3\ln x$

Decibels

The level of sound intensity in decibels (dB) is

$$\beta = 10 \log \left(\frac{I}{I_0}\right),$$

where β (beta) is the number of decibels, *I* is the sound intensity in W/m², and $I_0 = 10^{-12}$ W/m² is the threshold of human hearing (the quietest audible sound intensity).

Quick Review

Evaluate the expression without using a calculator.

- 1. 6⁻²
- 2. $\frac{8^{11}}{2^{32}}$
- 3. 7[°]

Rewrite as a base raised to a rational number exponent.

4.
$$\frac{1}{\sqrt{e^3}}$$

5. $\sqrt[4]{10}$

Quick Review Solutions

Evaluate the expression without using a calculator.

1. 6^{-2} $\frac{1}{36}$ 2. $\frac{8^{11}}{2^{32}}$ 2 3. 7^{0} 1

Rewrite as a base raised to a rational number exponent.

4.
$$\frac{1}{\sqrt{e^3}}$$
 $e^{-3/2}$
5. $\sqrt[4]{10}$ $10^{1/4}$