3.3

Logarithmic Functions and Their Graphs

What you'll learn about

- Inverses of Exponential Functions
- Common Logarithms - Base 10
- Natural Logarithms - Base e
- Graphs of Logarithmic Functions
- Measuring Sound Using Decibels
... and why
Logarithmic functions are used in many applications, including the measurement of the relative intensity of sounds.

Changing Between Logarithmic and Exponential Form

If $x>0$ and $0<b \neq 1$, then $y=\log _{b}(x)$ if and only if $b^{y}=x$.

Inverses of Exponential Functions

Basic Properties of Logarithms

For $0<b \neq 1, x>0$, and any real number y.
$g \log _{b} 1=0 \quad$ because $b^{0}=1$.
$g \log _{b} b=1 \quad$ because $b^{1}=b$.
$g \log _{b} b^{y}=y \quad$ because $b^{y}=b^{y}$.
$g b^{\log _{b} x}=x \quad$ because $\log _{b} x=\log _{b} x$.

An Exponential Function and Its Inverse

x	$f(x)=2^{x}$
-3	$1 / 8$
-2	$1 / 4$
-1	$1 / 2$
0	1
1	2
2	4
3	8

x	$f^{-1}(x)=\log _{2} x$
$1 / 8$	-3
$1 / 4$	-2
$1 / 2$	-1
1	0
2	1
4	2
8	3

Common Logarithm - Base 10

- Logarithms with base 10 are called common logarithms.
- The common logarithm $\log _{10} x=\log x$.
- The common logarithm is the inverse of the exponential function $y=10^{x}$.

Basic Properties of Common Logarithms

$$
\begin{aligned}
& \text { Let } x \text { and } y \text { be real numbers with } x>0 . \\
& \mathrm{g} \log 1=0 \text { because } 10^{0}=1 . \\
& \mathrm{g} \log 10=1 \text { because } 10^{1}=10 . \\
& \mathrm{g} \log 10^{y}=y \text { because } 10^{y}=10^{y} \\
& \mathrm{~g} 10^{\log x}=x \text { because } \log x=\log x .
\end{aligned}
$$

Example Solving Simple Logarithmic Equations

Solve the equation by changing it to exponential form.
$\log x=4$

Example Solving Simple Logarithmic Equations

Solve the equation by changing it to exponential form.
$\log x=4$

$$
x=10^{4}=10,000
$$

Basic Properties of Natural Logarithms

> Let x and y be real numbers with $x>0$.
> $\mathrm{g} \ln 1=0$ because $e^{0}=1$.
> $\mathrm{g} \ln e=1$ because $e^{1}=e$.
> $\mathrm{g} \ln e^{y}=y$ because $e^{y}=e^{y}$.
> $\mathrm{q} e^{\ln x}=x$ because $\ln x=\ln x$.

Graphs of the Common and Natural Logarithm

$[-1,5]$ by $[-2,2]$

Example Transforming Logarithmic Graphs

Describe transformations that will transform $f(x)=\ln x$ to $g(x)=2-3 \ln x$.

Example Transforming Logarithmic Graphs

Describe transformations that will transform $f(x)=\ln x$ to $g(x)=2-3 \ln x$.

Solve Algebraically

$$
\begin{aligned}
g(x) & =2-3 \ln x \\
& =-3 \ln x+2 \\
& =-f(x)+2
\end{aligned}
$$

So g can be obtained by reflecting the graph of f across the x-axis, stretching vertically by a factor of 3 , and then shifting upward 2 units.

Example Transforming Logarithmic Graphs

Describe transformations that will transform $f(x)=\ln x$ to $g(x)=2-3 \ln x$.
a. Reflect over the x-axis to obtain $y=-\ln x$
b. Stretch vertically by a factor of 3 to obtain

$$
y=-3 \ln x
$$

Example Transforming Logarithmic Graphs

Describe transformations that will transform $f(x)=\ln x$ to $g(x)=2-3 \ln x$.
c. Translate upward 2 units to obtain

$$
\begin{aligned}
& y=-3 \ln x+2 \\
& y=2-3 \ln x
\end{aligned}
$$

Decibels

The level of sound intensity in decibels (dB) is

$$
\beta=10 \log \left(\frac{I}{I_{0}}\right)
$$

where β (beta) is the number of decibels,
I is the sound intensity in $\mathrm{W} / \mathrm{m}^{2}$, and $I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ is the threshold of human hearing (the quietest audible sound intensity).

Quick Review

Evaluate the expression without using a calculator.

1. 6^{-2}
2. $\frac{8^{11}}{2^{32}}$
3. 7^{0}

Rewrite as a base raised to a rational number exponent.
4. $\frac{1}{\sqrt{e^{3}}}$
5. $\sqrt[4]{10}$

Quick Review Solutions

Evaluate the expression without using a calculator.

1. $6^{-2} \frac{1}{36}$
2. $\frac{8^{11}}{2^{32}} 2$
3. $7^{0} \quad 1$

Rewrite as a base raised to a rational number exponent.
4. $\frac{1}{\sqrt{e^{3}}}$
$e^{-3 / 2}$
5. $\sqrt[4]{10}$
$10^{1 / 4}$

