

Exponential and Logistic Functions

3.1

What you'll learn about

- Exponential Functions and Their Graphs
- The Natural Base e
- Logistic Functions and Their Graphs
- Population Models
... and why
Exponential and logistic functions model many growth patterns, including the growth of human and animal populations.

Exponential Functions

Let a and b be real number constants.
An exponential function in x is a function
that can be written in the form

$$
f(x)=a \cdot b^{x}
$$

where a is nonzero, b is positive, and $b \neq 1$.
The constant a is the initial value of f
(the value at $x=0$), and b is the base.

Example Finding an Exponential Function from its Table of Values

Determine formulas for the exponential function g and h whose values are given in the table below.

x	$g(x)$	$h(x)$
-2	$4 / 9 \times 3$	$128) \times \frac{1}{4}$
-1	$)^{4 / 3} \times 3$	$32 \frac{k}{2} \times \frac{1}{4}$
0	$\left.{ }_{12}\right)^{k} \times 3$	${ }_{2}^{8}{ }^{k} \times \frac{1}{4}$
2	$\left.{ }_{36}\right)^{12} \times 3$	${ }_{1 / 2}^{2} \times \frac{1}{4}$

Example Finding an Exponential Function from its Table of Values

Determine formulas for the exponential function g and h whose values are given in the table below.

Because g is exponential, $g(x)=a \cdot b^{x}$. Because $g(0)=4$, $a=4$. Because $g(1)=4 \cdot b^{1}=12$, the base $b=3$.

So, $g(x)=4 \cdot 3^{x}$.
Because h is exponential, $h(x)=a \cdot b^{x}$. Because $h(0)=8$, $a=8$. Because $h(1)=8 \cdot b^{1}=2$, the base $b=1 / 4$.

So, $h(x)=8 \cdot\left(\frac{1}{4}\right)^{x}$.

Exponential Growth and Decay

For any exponential function $f(x)=a \cdot b^{x}$ and any real number x,

$$
f(x+1)=b \cdot f(x) .
$$

If $a>0$ and $b>1$, the function f is increasing and is an exponential growth function.
The base b is its growth factor.
If $a>0$ and $b<1$, the function f is decreasing and is an exponential decay function.
The base b is its decay factor.

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x)=2^{x}$ into the graph of each function. Graph each function.
a. $g(x)=2^{x-1}$
b. $h(x)=2^{-x}$
c. $k(x)=3 \cdot 2^{x}$

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x)=2^{x}$ into the graph of each function. Graph each function.
a. $g(x)=2^{x-1}$

The graph of $g(x)=2^{x-1}$ is obtained by translating the graph of $f(x)=2^{x}$ by 1 unit to the right.

$[-4,4]$ by $[-2,8]$

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x)=2^{x}$ into the graph of each function. Graph each function. b. $h(x)=2^{-x}$

The graph of $h(x)=-e$ is obtained by reflecting the graph of $f(x)=e^{x}$ across the x-axis.

$[-4,4]$ by $[-2,8]$

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x)=2^{x}$ into the graph of each function. Graph each function.
c. $k(x)=3 \cdot 2^{x}$

The graph of $k(x)=3 \cdot 2^{x}$ is obtained by vertically stretching the graph of $f(x)=2^{x}$ by a factor of 3 .

$[-4,4]$ by $[-2,8]$

The Natural Base e

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

Exponential Functions and the Base e

Any exponential function $f(x)=a \cdot b^{x}$ can be rewritten as

$$
f(x)=a \cdot e^{k x}
$$

for any appropriately chosen real number constant k.
If $a>0$ and $k>0, f(x)=a \cdot e^{k x}$
is an exponential growth function.
If $a>0$ and $k<0, f(x)=a \cdot e^{k x}$
is an exponential decay function.

Exponential Functions and the Base e

(a)

(b)

Exponential growth function Exponential decay function

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x)=e^{x}$ into the graph of each function. Graph each function.
a. $g(x)=e^{x+2}$
b. $h(x)=-e^{x}$
c. $k(x)=e^{x}-1$

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x)=e^{x}$ into the graph of each function. Graph each function.
a. $g(x)=e^{x+2}$

The graph of $g(x)=e^{x+2}$ is obtained by translating the graph of $f(x)=e^{x}$ by 2 units to the left.

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x)=e^{x}$ into the graph of each function. Graph each function. b. $h(x)=-e^{x}$

The graph of $h(x)=-e$ is obtained by reflecting the graph of $f(x)=e^{x}$ across the x-axis.

$$
[-5,5] \text { by }[-5,5]
$$

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x)=e^{x}$ into the graph of each function. Graph each function.
c. $k(x)=e^{x}-1$

The graph of $k(x)=e^{x}-1$ is obtained by translating the graph of $f(x)=e^{x}$ by 1 unit down.

$$
[-5,5] \text { by }[-2,8]
$$

Logistic Growth Functions

Let a, b, c, and k be positive constants, with $b<1$.
A logistic growth function in x is a function that can be written in the form

$$
f(x)=\frac{c}{1+a \cdot b^{x}} \quad \text { or } \quad f(x)=\frac{c}{1+a \cdot e^{-k x}}
$$

where the constant c is the limit to growth.

Quick Review

Evaluate the expression without using a calculator.

1. $\sqrt[3]{-125}$
$2 . \sqrt[3]{\frac{27}{64}}$
2. $27^{4 / 3}$

Rewrite the expression using a single positive exponent.
4. $\left(a^{-3}\right)^{2}$

Use a calculator to evaluate the expression.
5. $\sqrt[5]{3.71293}$

Quick Review Solutions

Evaluate the expression without using a calculator.

1. $\sqrt[3]{-125}-5$
$2 . \sqrt[3]{\frac{27}{64}}$
$\frac{3}{4}$
2. $27^{4 / 3}$

81
Rewrite the expression using a single positive exponent.
4. $\left(a^{-3}\right)^{2} \quad \frac{1}{a^{6}}$

Use a calculator to evaluate the expression.
5. $\sqrt[5]{3.71293}$
1.3

