

Equations in One Variable

What you'll learn about

- Solving Rational Equations
- Extraneous Solutions
- Applications
... and why
Applications involving rational functions as models often require that an equation involving fractions be solved.

Extraneous Solutions

When we multiply or divide an equation by an expression containing variables, the resulting equation may have solutions that are not solutions of the original equation. These are extraneous solutions. For this reason we must check each solution of the resulting equation in the original equation.

Example Solving by Clearing Fractions

Solve $x+\frac{1}{x-3}=1$.

Example Solving by Clearing Fractions

Solve $x+\frac{1}{x-3}=1$.
The LCD is $x-3$.
$x+\frac{1}{x-3}=1$
$x(x-3)+1=x-3$
$x^{2}-3 x+1=x-3$
$x^{2}-4 x+4=0$
$(x-2)^{2}=0$

$$
x=2
$$

Support numerically:
For $x=2: \quad x+\frac{1}{x-3}$
$=2+\frac{1}{2-3}=2+\frac{1}{-1}=1$.
$x=2$ is the solution
of the original equation.

Example Solving by Clearing Fractions

Solve $x+\frac{2}{x}=3$

Example Solving by Clearing Fractions

Solve $x+\frac{2}{x}=3$.
The LCD is x.
$x+\frac{2}{x}=3$
$x^{2}+2=3 x \quad$ multiply by x
$x^{2}-3 x+2=0 \quad$ subtract $3 x$
$(x-2)(x-1)=0$ factor
$x=2$ or $x=1$

Confirm algebraically:
Let $x=2: \quad 2+\frac{2}{2}=3$
Let $x=1: \quad 1+\frac{2}{1}=3$
Each value is a solution
of the original equation.

Example Eliminating Extraneous Solutions

Solve the equation $\frac{1}{x-3}+\frac{2 x}{x-1}=\frac{2}{x^{2}-4 x+3}$.

Example Eliminating Extraneous Solutions

The LCD is $(x-1)(x-3)$.
$(x-1)(x-3)\left(\frac{1}{x-3}+\frac{2 x}{x-1}\right)=(x-1)(x-3)\left(\frac{2}{x^{2}-4 x+3}\right)$
$(x-1)(1)+2 x(x-3)=2$
$2 x^{2}-5 x-3=0$
$(2 x+1)(x-3)=0$
$x=-1 / 2$ or $x=3$
Check solutions in the original equation. $x=-1 / 2$ is the only solution. The original equation is not defined at $x=3$.

Example Finding a Minimum Perimeter

Find the dimensions of the rectangle with minimum perimeter if its area is 300 square meters.
Find this least perimeter.

Example Finding a Minimum Perimeter

Word Statement: Perimeter $=2 \times$ length $+2 \times$ width
$x=$ width in meters $300 / x=$ length in meters
Function to be minimized: $P(x)=2 x+2\left(\frac{300}{x}\right)=2 x+\frac{600}{x}$
Solve graphically: A minimum of approximately 69.28 occurs when $x \approx 17.32$

The width is 17.32 m and the length is $300 / 17.32=17.32 \mathrm{~m}$. The minimum perimeter is 69.28 m .

Quick Review

Find the missing numerator or denominator.

1. $\frac{2}{x+3}=\frac{?}{x^{2}+2 x-3} \quad$ 2. $\frac{x-4}{x+4}=\frac{x^{2}-16}{?}$

Find the LCD and rewrite the expression as a single fraction reduced to lowest terms.
3. $\frac{3}{2}+\frac{5}{4}-\frac{7}{12}$

$$
\text { 4. } \frac{x}{x-1}+\frac{2}{x}
$$

Use the quadratic formula to find the zeros of the quadratic polynomial.
5. $2 x^{2}+4 x-1$

Quick Review Solutions

Find the missing numerator or denominator.

1. $\frac{2}{x+3}=\frac{?}{x^{2}+2 x-3}: 2 x-22 \cdot \frac{x-4}{x+4}=\frac{x^{2}-16}{?}: x^{2}+8 x+16$

Find the LCD and rewrite the expression as a single fraction reduced to lowest terms.
3. $\frac{3}{2}+\frac{5}{4}-\frac{7}{12}=\frac{13}{6} \quad$ 4. $\frac{x}{x-1}+\frac{2}{x}=\frac{x^{2}+2 x-2}{x^{2}-x}$

Use the quadratic formula to find the zeros of the quadratic polynomial.
5. $2 x^{2}+4 x-1 \quad x=\frac{-2 \pm \sqrt{6}}{2}$

