

Graphs of Rational Functions

What you'll learn about

- Rational Functions
- Transformations of the Reciprocal Function
- Limits and Asymptotes
- Analyzing Graphs of Rational Functions
... and why
Rational functions are used in calculus and in scientific applications such as inverse proportions.

Rational Functions

Let f and g be polynomial functions with $g(x) \neq 0$.
Then the function given by

$$
r(x)=\frac{f(x)}{g(x)}
$$

is a rational function.

Example Finding the Domain of a Rational Function

Find the domain of f and use limits to describe the behavior at value(s) of x not in its domain.
$f(x)=\frac{2}{x+2}$

Example Finding the Domain of a Rational Function

Find the domain of f and use limits to describe the behavior at value(s) of x not in its domain.
$f(x)=\frac{2}{x+2}$
The domain of f is all real numbers $x \neq-2$. Use a graph of the function to find
$\lim _{x \rightarrow-^{+}} f(x)=\infty$ and $x \rightarrow-2^{+}$
$\lim _{x \rightarrow-2^{-}} f(x)=-\infty$.
$x \rightarrow-2^{-}$

The Reciprocal Function

Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $\quad(-\infty, 0) \cup(0, \infty)$

$$
f(x)=\frac{1}{x}
$$

Continuity: All $x \neq 0$
Decreasing on $(-\infty, 0) \cup(0, \infty)$
Symmetric with respect to origin (an odd function)

Unbounded

No local extrema
Horizontal asymptote: $y=0$

Vertical asymptote: $x=0 \quad[-4.7,4.7]$ by $[-3.1,3.1]$
End behavior: $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=0$

Example Transforming the Reciprocal Function

Describe how the graph of the function can be obtained by tranforming the graph of $f(x)=\frac{1}{x}$. Identify the horizontal and vertical asymptotes and use limits to describe the corresponding behavior. Sketch the graph of the function.
a. $g(x)=-\frac{2}{x} \quad$ b. $h(x)=-\frac{2}{x+3} \quad$ c. $k(x)=\frac{2 x+4}{x+3}$

The graph of $f(x)=\frac{1}{x}$ is shown.

Example Transforming the Reciprocal Function

Example Transforming the Reciprocal Function

a. $g(x)=-\frac{2}{x}=-2 f(x)$
reflect f across x-axis
stretch vertically by factor of 2 vertical asymptote $x=0$
horizontal asymptote $y=0$
$\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow-\infty} g(x)=0$
$\lim _{x \rightarrow 0^{+}} g(x)=-\infty$ and $x \rightarrow 0^{+}$
$\lim _{x \rightarrow 0^{-}} g(x)=\infty$.

Example Transforming the

 Reciprocal Functionb. $h(x)=-\frac{2}{x+3}=g(x+3)-2 f(x+3)$
reflect f across x-axis
stretch vertically by factor of 2 translate 3 units left vertical asymptote $x=-3$
horizontal asymptote $y=0$
$\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow-\infty} h(x)=0$
$\lim h(x)=-\infty$ and $x \rightarrow-3^{+}$
$\lim _{x} h(x)=\infty$.
$x \rightarrow-3^{-}$

Example Transforming the Reciprocal Function

c. $k(x)=\frac{2 x+4}{x+3}=2-\frac{2}{x+3}=h(2)+2$

$$
=g(x+3)+2=-2 f(x+3)+2
$$

reflect f across x-axis stretch vertically by factor of 2 translate 3 units left, 2 upward vertical asymptote $x=-3$
horizontal asymptote $y=2$
$\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow-\infty} h(x)=2$
$\lim _{x \rightarrow 3^{+}} h(x)=-\infty, \lim _{x \rightarrow 3^{-}} h(x)=\infty$.

$x \rightarrow-3^{+}$
$x \rightarrow-3^{-}$

Graph of a Rational Function

The graph of $y=f(x) / g(x)=\left(a_{n} x^{n}+\ldots\right) /\left(b_{m} x^{m}+\ldots\right)$ has the following characteristics:

1. End behavior asymptote :

If $n<m$, the end behavior asymptote is the horizontal asymptote $y=0$.
If $n=m$, the end behavior asymptote is the horizontal asymptote $y=a_{n} / b_{m}$.
If $n>m$, the end behavior asymptote is the quotient polynomial function $y=q(x)$, where $f(x)=g(x) q(x)+r(x)$. There is no horizontal asymptote.

Graph of a Rational Function

The graph of $y=f(x) / g(x)=\left(a_{n} x^{n}+\ldots\right) /\left(b_{m} x^{m}+\ldots\right)$ has the following characteristics:
2. Vertical asymptotes: These occur at the zeros of the denominator, provided that the zeros are not also zeros of the numerator of equal or greater multiplicity.
3. x-intercepts: These occur at the zeros of the numerator, which are not also zeros of the denominator.
4. \boldsymbol{y}-intercepts : This is the value of $f(0)$, if defined.

Example Finding Asymptotes of Rational Functions

Find the asymptotes of the function $f(x)=\frac{2(x+3)(x-3)}{(x+1)(x+5)}$.

Example Finding Asymptotes of Rational Functions

Find the asymptotes of the function $f(x)=\frac{2(x+3)(x-3)}{(x+1)(x+5)}$.

There are vertical asymptotes at the zeros of the denominator: $x=-1$ and $x=-5$.

The end behavior asymptote is at $y=2$.

Example Graphing a Rational Function

Find the asymptotes and intercepts of

$$
f(x)=\frac{x-1}{(x-2)(x+3)} \text { and graph } f(x) .
$$

Example Graphing a Rational Function
 $$
f(x)=\frac{x-1}{(x-2)(x+3)}
$$

Numerator is zero when $x=1$
so the x-intercept is $1 . f(0)=1 / 6$,
the y-intercept is $1 / 6$. Denominator is zero when $x=2$ and $x=-3$, vertical asymptotes at $x=2$ and $x=-3$. Degree of numerator is less than the degree of denominator, horizontal asymptote at $y=0$.

Quick Review

Use factoring to find the real zeros of the function.

1. $f(x)=2 x^{2}+7 x+6$
2. $f(x)=x^{2}-16$
3. $f(x)=x^{2}+16$
4. $f(x)=x^{3}-27$

Find the quotient and remainder when $f(x)$ is divided by $d(x)$.
5. $f(x)=5 x-3, \quad d(x)=x$

Quick Review Solutions

Use factoring to find the real zeros of the function.

1. $f(x)=2 x^{2}+7 x+6 \quad x=-3 / 2, x=-2$
2. $f(x)=x^{2}-16$
$x= \pm 4$
3. $f(x)=x^{2}+16$
no real zeros
4. $f(x)=x^{3}-27 \quad x=3$

Find the quotient and remainder when $f(x)$ is divided by $d(x)$.
5. $f(x)=5 x-3, d(x)=x \quad 5 ;-3$

