2.5 Complex
 Zeros and the Fundamental Theorem of Algebra

What you'll learn about

- Two Major Theorems
- Complex Conjugate Zeros
- Factoring with Real Number Coefficients
... and why
These topics provide the complete story about the zeros and factors of polynomials with real number coefficients.

Fundamental Theorem of Algebra

A polynomial function of degree n has n complex zeros (real and nonreal). Some of these zeros may be repeated.

Linear Factorization Theorem

If $f(x)$ is a polynomial function of degree $n>0$, then $f(x)$ has precisely n linear factors and

$$
f(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots\left(x-z_{n}\right)
$$

where a is the leading coefficient of $f(x)$ and $z_{1}, z_{2}, \ldots, z_{n}$ are the complex zeros of $f(x)$. The z_{i} are not necessarily distinct numbers; some may be repeated.

Fundamental Polynomial Connections in the Complex Case

The following statements about a polynomial function f are equivalent if k is a complex number:

1. $x=k$ is a solution (or root) of the equation $f(x)=0$
2. k is a zero of the function f.
3. $x-k$ is a factor of $f(x)$.

Example Exploring Fundamental Polynomial Connections

Write the polynomial function in standard form, identify the zeros of the function and the x-intercepts of its graph. $f(x)=(x-3 i)(x+3 i)$

Example Exploring Fundamental Polynomial Connections

Write the polynomial function in standard form, identify the zeros of the function and the x-intercepts of its graph. $f(x)=(x-3 i)(x+3 i)$

The function $f(x)=(x-3 i)(x+3 i)=x^{2}+9$ has two zeros: $x=3 i$ and $x=-3 i$. Because the zeros are not real, the graph of f has no x-intercepts.

Complex Conjugate Zeros

Suppose that $f(x)$ is a polynomial function with real coefficients. If a and b are real numbers with $b \neq 0$ and $a+b i$ is a zero of $f(x)$, then its complex conjugate $a-b i$ is also a zero of $f(x)$.

Example Finding a Polynomial from Given Zeros

Write a polynomial function of minimum degree in standard form with real coefficients whose zeros include
$-3,3-i$, and $2+5 i$.

Example Finding a Polynomial from Given Zeros

Write a polynomial function of minimum degree in standard form with real coefficients whose zeros include $-3,3-i$, and $2+5 i$.

Because the coefficients are real and $3-i$ is a zero, $3+i$ must also be a zero. Therefore, $x-(3-i)$ and $x-(3+i)$ must be factors.

Similarly, $2-5 i$ must be a zero since $2-5 i$ is a zero. So $x-(2-5 i)$ and $x-(2+5 i)$ must both be factors of f. Because -3 is a real zeros, $x+3$ must be a factor.

Example Finding a Polynomial from

 Given Zeros$$
f(x)=(x+3)\left(x^{2}-6 x+10\right)\left(x^{2}-4 x+29\right)
$$

$$
=\left(x^{3}-3 x^{2}-8 x+10\right)\left(x^{2}-4 x+29\right)
$$

$$
=x^{5}-7 x^{4}+33 x^{3}-25 x^{2}-352 x+870
$$

$$
\begin{aligned}
& f(x)=(x+3)[x-(3-i)][x-(3+i)][x-(2-5 i)][x-(2+5 i)] \\
& =(x+3)[(x-3)+i][(x-3)-i][(x-2)+5 i][(x-2)-5 i] \\
& (x-3)^{2}-i^{2} \quad(x-2)^{2}-(5 i)^{2} \\
& \left(x^{2}-6 x+9\right)-(-1) \quad\left(x^{2}-4 x+4\right)-(-25) \\
& x^{2}-6 x+10 \quad x^{2}-4 x+29
\end{aligned}
$$

Factors of a Polynomial with Real Coefficients

Every polynomial function with real coefficients can be written as a product of linear factors and irreducible quadratic factors, each with real coefficients.

Example Factoring a Polynomial

Write $f(x)=3 x^{5}+x^{4}-24 x^{3}-8 x^{2}-27 x-9$ as a product of linear and irreducible quadratic factors, each with real coefficients.

Example Factoring a Polynomial

Write $f(x)=3 x^{5}+x^{4}-24 x^{3}-8 x^{2}-27 x-9$ as a product of linear and irreducible quadratic factors, each with real coefficients.

The Rational Zeros Theorem provides the candidates for the rational zeros of f. The graph of f suggests which candidates to try first. Using synthetic division, find that $x=-1 / 3$ is a zero. Thus,
$f(x)=3 x^{5}+x^{4}-24 x^{3}-8 x^{2}-27 x-9$

Example Factoring a Polynomial

Write $f(x)=3 x^{5}+x^{4}-24 x^{3}-8 x^{2}-27 x-9$ as a product of linear and irreducible quadratic factors, each with real coefficients.

$$
\begin{aligned}
f(x) & =3 x^{5}+x^{4}-24 x^{3}-8 x^{2}-27 x-9 \\
& =\left(x+\frac{1}{3}\right)(3)\left(x^{4}-8 x^{2}-9\right) \\
& =3\left(x+\frac{1}{3}\right)\left(x^{2}-9\right)\left(x^{2}+1\right) \\
& =3\left(x+\frac{1}{3}\right)(x-3)(x+3)\left(x^{2}+1\right)
\end{aligned}
$$

Quick Review

Perform the indicated operation, and write the result in the form $a+b i$.

1. $(2+3 i)+(-1+5 i)$
2. $(-3+2 i)(3-4 i)$

Factor the quadratic equation.
3. $2 x^{2}-9 x-5$

Solve the quadratic equation.
4. $x^{2}-6 x+10=0$

List all potential rational zeros.
5. $4 x^{4}-3 x^{2}+x+2$

Quick Review Solutions

Perform the indicated operation, and write the result in the form $a+b i$.

1. $(2+3 i)+(-1+5 i) \quad 1+8 i$
2. $(-3+2 i)(3-4 i) \quad-1+18 i$

Factor the quadratic equation.
3. $2 x^{2}-9 x-5 \quad(2 x+1)(x-5)$

Solve the quadratic equation.
4. $x^{2}-6 x+10=0 \quad x=3 \pm i$

List all potential rational zeros.
5. $4 x^{4}-3 x^{2}+x+2 \quad \pm 2, \pm 1, \pm 1 / 2, \pm 1 / 4$

