2.4

Real Zeros of Polynomial Functions

What you'll learn about

- Long Division and the Division Algorithm
- Remainder and Factor Theorems
- Synthetic Division
- Rational Zeros Theorem
- Upper and Lower Bounds
... and why
These topics help identify and locate the real zeros of polynomial functions.

Division Algorithm for Polynomials

Let $f(x)$ and $d(x)$ be polynomials with the degree of f greater than or equal to the degree of d, and $d(x) \neq 0$. Then there are unique polynomials $q(x)$ and $r(x)$, called the quotient and remainder, such that

$$
f(x)=d(x) \cdot q(x)+r(x)
$$

where either $r(x)=0$ or the degree of r is less than the degree of d.
The function $f(x)$ in the division algorithm is the dividend, and $d(x)$ is the divisor.
If $r(x)=0$, we say $d(x)$ divides evenly into $f(x)$.

Example Using Polynomial Long Division

Use long division to find the quotient and remainder when $2 x^{4}+x^{3}-3$ is divided by $x^{2}+x+1$.

Example Using Polynomial Long Division

$$
\begin{array}{r}
x ^ { 2 } + x + 1 \longdiv { 2 x ^ { 2 } - x - 1 } \\
\frac{2 x^{4}+x^{3}+0 x^{2}+0 x-3}{-x^{3}-2 x^{2}+0 x-3} \\
\frac{-x^{3}-x^{2}-x}{-x^{2}+x-3} \\
\frac{-x^{2}-x-1}{2 x-2}
\end{array}
$$

$$
\left(2 x^{4}+x^{3}-3\right) \div\left(x^{2}+x+1\right)=2 x^{2}-x-1+\frac{2 x-2}{x^{2}+x+1}
$$

Remainder Theorem

If polynomial $f(x)$ is divided by $x-k$, then the remainder is $r=f(k)$.

Example Using the Remainder Theorem

Find the remainder when $f(x)=2 x^{2}-x+12$ is divided by $x+3$.

Example Using the Remainder Theorem

Find the remainder when $f(x)=2 x^{2}-x+12$ is divided by $x+3$.

$$
r=f(-3)=2(-3)^{2}-(-3)+12=33
$$

Factor Theorem

A polynomial function $f(x)$ has a factor $x-k$ if and only if $f(k)=0$.

Fundamental Connections for Polynomial Functions

For a polynomial function f and a real number k the following statements are equivalent:

1. $x=k$ is a solution (or root) of the equation $f(x)=0$
2. k is a zero of the function f.
3. k is an x-intercept of the graph of $y=f(x)$.
4. $x-k$ is a factor of $f(x)$.

Example Using Synthetic Division

Divide $3 x^{3}-2 x^{2}+x-5$ by $x-1$ using synthetic division.

Example Using Synthetic Division

Divide $3 x^{3}-2 x^{2}+x-5$ by $x-1$ using synthetic division.

$$
\begin{aligned}
& \text { 1] } 3 \\
& 3 \\
& \begin{array}{rrrr}
& 3 & 1 & 2 \\
\hline 3 & 1 & 2 & -3
\end{array} \\
& \frac{3 x^{3}-2 x^{2}+x-5}{(x-1)}=3 x^{2}+x+2-\frac{3}{(x-1)}
\end{aligned}
$$

Rational Zeros Theorem

Suppose f is a polynomial function of degree $n \geq 1$ of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0},
$$

with every coefficient an integer
and $a_{0} \neq 0$. If $x=p / q$ is a rational zero of f, where p and q have no common integer factors other than 1 , then
$\mathrm{g} p$ is an integer factor of the constant coefficient a_{0}, $g q$ is an integer factor of the leading coefficient a_{n}.

Upper and Lower Bound Tests for

Real Zeros

Let f be a polynomial function of degree $n \geq 1$ with a positive leading coefficient. Suppose $f(x)$ is divided by $x-k$ using synthetic division.
gIf $k \geq 0$ and every number in the last line is nonnegative
(positive or zero), then k is an upper bound for the real zeros of f.
gIf $k \leq 0$ and the numbers in the last line are alternately nonnegative and nonpositive, then k is a lower bound for the real zeros of f.

Example Finding the Real Zeros of a Polynomial Function

Find all of the real zeros of
$f(x)=2 x^{5}-x^{4}-2 x^{3}-14 x^{2}-6 x+36$ and identify them as rational or irrational.

Example Finding the Real Zeros of a Polynomial Function

Find all of the real zeros of
$f(x)=2 x^{5}-x^{4}-2 x^{3}-14 x^{2}-6 x+36$
and identify them as rational or irrational.
Potential Rational Zeros:
Factors of 36
$\frac{\text { Factors of } 2}{:} \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36$,

$$
\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}
$$

Example Finding the Real Zeros of a Polynomial Function

The graph suggests that only
$x=-\frac{3}{2}, x=\frac{3}{2}$, and $x=2$ be
considered. Synthetic division shows that only $x=-\frac{3}{2}$, and
$x=2$ are zeros of f, and
$[-6,6]$ by $[-40,40]$ $f(x)=(2 x+3)(x-2)\left(x^{3}+2 x-6\right)$.

Example Finding the Real Zeros of a Polynomial Function

Now let $g(x)=x^{3}+2 x-6$. potential zeros :
$\pm 1, \pm 2, \pm 3, \pm 6$
but the graph shows that these values are not zeros of g.

So f has no more rational zeros.

$$
[-6,6] \text { by }[-25,25]
$$

Example Finding the Real Zeros of a Polynomial Function

Using grapher methods with either function (f or g) shows that an irrational zero exists at $x \approx 1.456$. The upper and lower bound tests can be applied to f or g to show that there are no zeros outside the viewing

$[-6,6]$ by $[-40,40]$ windows shown.

The real zeros of f are the rational numbers
$x=-\frac{3}{2}$ and $x=2$, and an irrational number

$x \approx 1.456$.
$[-6,6]$ by $[-25,25]$

Example Finding the Real Zeros of a Polynomial Function

Find all of the real zeros of $f(x)=2 x^{4}-7 x^{3}-8 x^{2}+14 x+8$.

Example Finding the Real Zeros of a Polynomial Function

Find all of the real zeros of $f(x)=2 x^{4}-7 x^{3}-8 x^{2}+14 x+8$. Potential Rational Zeros :
$\frac{\text { Factors of } 8}{\text { Factors of } 2}: \frac{ \pm 1, \pm 2, \pm 4, \pm 8}{ \pm 1, \pm 2}= \pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}$ Compare the x-intercepts of the graph and the list of possibilities, and decide that 4 and $-1 / 2$ are potential rational zeros.

$[-2,5]$ by $[-50,50]$

Example Finding the Real Zeros of a Polynomial Function

Find all of the real zeros of $f(x)=2 x^{4}-7 x^{3}-8 x^{2}+14 x+8$.

$$
\begin{array}{lccrr}
4 & 2 & -7 & -8 & 14 \\
& 8 & 4 & -16 & -8 \\
\hline 2 & 1 & -4 & -2 & 0
\end{array}
$$

This tells us that

$$
2 x^{4}-7 x^{3}-8 x^{2}+14 x+8=(x-4)\left(2 x^{3}+x^{2}-4 x-2\right) .
$$

Example Finding the Real Zeros of a Polynomial Function

Find all of the real zeros of $f(x)=2 x^{4}-7 x^{3}-8 x^{2}+14 x+8$.

$$
\begin{array}{ccccc}
-1 / 2 & 2 & 1 & -4 & -2 \\
& -1 & 0 & 2 \\
\hline 2 & 0 & -4 & 0
\end{array}
$$

This tells us that
$2 x^{4}-7 x^{3}-8 x^{2}+14 x+8=2(x-4)\left(x+\frac{1}{2}\right)\left(x^{2}-2\right)$.
The real zeros are $4,-\frac{1}{2}, \pm \sqrt{2}$.

Quick Review

Rewrite the expression as a polynomial in standard form.

1. $\frac{2 x^{3}+3 x^{2}+x}{x}$
2. $\frac{2 x^{5}-8 x^{3}+x^{2}}{2 x^{2}}$

Factor the polynomial into linear factors.
3. $x^{3}-16 x$
4. $x^{3}+x^{2}-4 x-4$
5. $6 x^{2}-24$

Quick Review Solutions

Rewrite the expression as a polynomial in standard form.

1. $\frac{2 x^{3}+3 x^{2}+x}{x} \quad 2 x^{2}+3 x+1$
2. $\frac{2 x^{5}-8 x^{3}+x^{2}}{2 x^{2}} \quad x^{3}-4 x+\frac{1}{2}$

Factor the polynomial into linear factors. 3. $x^{3}-16 x \quad x(x+4)(x-4)$
4. $x^{3}+x^{2}-4 x-4 \quad(x+1)(x+2)(x-2)$
5. $6 x^{2}-24 \quad 6(x+2)(x-2)$

