Real Zeros of Polynomial Functions

2.4

What you'll learn about

- Long Division and the Division Algorithm
- Remainder and Factor Theorems
- Synthetic Division
- Rational Zeros Theorem
- Upper and Lower Bounds

... and why These topics help identify and locate the real zeros of polynomial functions.

Division Algorithm for Polynomials

Let f(x) and d(x) be polynomials with the degree of fgreater than or equal to the degree of d, and $d(x) \neq 0$. Then there are unique polynomials q(x) and r(x), called the **quotient** and **remainder**, such that $f(x) = d(x) \cdot q(x) + r(x)$ where either r(x) = 0 or the degree of r is less than the

degree of d.

The function f(x) in the division algorithm is the **dividend**, and d(x) is the **divisor**.

If r(x) = 0, we say d(x) **divides evenly** into f(x).

Example Using Polynomial Long Division

Use long division to find the quotient and remainder when $2x^4 + x^3 - 3$ is divided by $x^2 + x + 1$.

Example Using Polynomial Long Division

$$\frac{2x^{2} - x - 1}{x^{2} + x + 1} \underbrace{)2x^{4} + x^{3} + 0x^{2} + 0x - 3}_{2x^{4} + 2x^{3} + 2x^{2}} \\
-x^{3} - 2x^{2} + 0x - 3 \\
\underbrace{-x^{3} - x^{2} - x}_{-x^{2} + x - 3} \\
\underbrace{-x^{2} - x - 1}_{2x - 2}$$

$$(2x^4 + x^3 - 3) \div (x^2 + x + 1) = 2x^2 - x - 1 + \frac{2x - 2}{x^2 + x + 1}$$

Remainder Theorem

If polynomial f(x) is divided by x - k, then the remainder is r = f(k).

Slide 2.4 - 6

Example Using the Remainder Theorem

Find the remainder when $f(x) = 2x^2 - x + 12$ is divided by x + 3.

Example Using the Remainder Theorem

Find the remainder when $f(x) = 2x^2 - x + 12$ is divided by x + 3.

$$r = f(-3) = 2(-3)^2 - (-3) + 12 = 33$$

Factor Theorem

A polynomial function f(x) has a factor x - kif and only if f(k) = 0.

Fundamental Connections for Polynomial Functions

For a polynomial function f and a real number k the following statements are equivalent:

x = k is a solution (or root) of the equation f(x) = 0
 k is a zero of the function f.
 k is an *x*-intercept of the graph of y = f(x).
 x - k is a factor of f(x).

Example Using Synthetic Division

Divide $3x^3 - 2x^2 + x - 5$ by x - 1 using synthetic division.

Example Using Synthetic Division

Divide $3x^3 - 2x^2 + x - 5$ by x - 1 using synthetic division.

Copyright © 2011 Pearson, Inc.

Slide 2.4 - 12

Rational Zeros Theorem

Suppose *f* is a polynomial function of degree $n \ge 1$ of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$

with every coefficient an integer and $a_0 \neq 0$. If x = p/q is a rational zero of f, where p and q have no common integer factors other than 1, then gp is an integer factor of the constant coefficient a_0 , gq is an integer factor of the leading coefficient a_n .

Upper and Lower Bound Tests for Real Zeros

- Let f be a polynomial function of degree $n \ge 1$ with a positive leading coefficient. Suppose f(x) is divided by x - k using synthetic division. gIf $k \ge 0$ and every number in the last line is nonnegative (positive or zero), then k is an *upper bound* for the real zeros of f. gIf $k \leq 0$ and the numbers in the last line are alternately
 - nonnegative and nonpositive, then k is a *lower bound* for the real zeros of f.

Find all of the real zeros of

 $f(x) = 2x^5 - x^4 - 2x^3 - 14x^2 - 6x + 36$

and identify them as rational or irrational.

Find all of the real zeros of

 $f(x) = 2x^5 - x^4 - 2x^3 - 14x^2 - 6x + 36$

and identify them as rational or irrational.

Potential Rational Zeros :

 $\frac{\text{Factors of 36}}{\text{Factors of 2}}:\pm 1,\pm 2,\pm 3,\pm 4,\pm 6,\pm 9,\pm 12,\pm 18,\pm 36,$

$$\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}$$

The graph suggests that only $x = -\frac{5}{2}, x = \frac{5}{2}, \text{ and } x = 2$ be considered. Synthetic division shows that only $x = -\frac{3}{2}$, and [-6, 6] by [-40, 40]x = 2 are zeros of f, and $f(x) = (2x+3)(x-2)(x^3+2x-6)$

Now let $g(x) = x^3 + 2x - 6$. *potential zeros* : $\pm 1, \pm 2, \pm 3, \pm 6$ but the graph shows that these values are not zeros of g. So f has no more rational zeros.

[-6, 6] by [-25, 25]

Using grapher methods with either function (f or g) shows that an irrational zero exists at $x \approx 1.456$. The upper and lower bound tests can be applied to f or g to show that there are no zeros outside the viewing windows shown.

The real zeros of f are the rational numbers

$$x = -\frac{3}{2}$$
 and $x = 2$, and an irrational number

 $x \approx 1.456.$

 $\int f(x)$

[-6, 6] by [-25, 25] Slide 2.4 - 19

Find all of the real zeros of $f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8$.

Find all of the real zeros of $f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8$.

Potential Rational Zeros :

 $\frac{\text{Factors of 8}}{\text{Factors of 2}}:\frac{\pm 1, \pm 2, \pm 4, \pm 8}{\pm 1, \pm 2} = \pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}$

Compare the *x*-intercepts of the graph and the list of possibilities, and decide that 4 and -1/2 are potential rational zeros.

[-2, 5] by [-50, 50]

Slide 2.4 - 21

Find all of the real zeros of $f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8$.

This tells us that

$$2x^{4} - 7x^{3} - 8x^{2} + 14x + 8 = (x - 4)(2x^{3} + x^{2} - 4x - 2).$$

Find all of the real zeros of $f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8$.

$$\begin{array}{c|ccccc} -1/2 & 2 & 1 & -4 & -2 \\ \hline & -1 & 0 & 2 \\ 2 & 0 & -4 & 0 \end{array}$$

This tells us that

$$2x^{4} - 7x^{3} - 8x^{2} + 14x + 8 = 2(x - 4)\left(x + \frac{1}{2}\right)\left(x^{2} - 2\right).$$

The real zeros are 4, $-\frac{1}{2}, \pm \sqrt{2}$.

Quick Review

Rewrite the expression as a polynomial in standard form.

1.
$$\frac{2x^{3} + 3x^{2} + x}{x}$$
2.
$$\frac{2x^{5} - 8x^{3} + x^{2}}{2x^{2}}$$

Factor the polynomial into linear factors.

3. $x^{3} - 16x$ 4. $x^{3} + x^{2} - 4x - 4$ 5. $6x^{2} - 24$

Quick Review Solutions

Rewrite the expression as a polynomial in standard form.

1.
$$\frac{2x^{3} + 3x^{2} + x}{x}$$
$$2x^{2} + 3x + 1$$

2.
$$\frac{2x^{5} - 8x^{3} + x^{2}}{2x^{2}}$$
$$x^{3} - 4x + \frac{1}{2}$$

Factor the polynomial into linear factors.

$$3. x^{3} - 16x \qquad x(x+4)(x-4)$$

$$4. x^{3} + x^{2} - 4x - 4 \qquad (x+1)(x+2)(x-2)$$

$$5. 6x^{2} - 24 \qquad 6(x+2)(x-2)$$