

Polynomial

 Functions of Higher Degree with Modeling
What you'll learn about

- Graphs of Polynomial Functions
- End Behavior of Polynomial Functions
- Zeros of Polynomial Functions
- Intermediate Value Theorem
- Modeling
... and why
These topics are important in modeling and can be used to provide approximations to more complicated functions, as you will see if you study calculus.

The Vocabulary of Polynomials

- Each monomial in the sum $-a_{n} x^{n}, a_{n-1} x^{n-1}, \ldots, a_{0}-$ is a term of the polynomial.
- A polynomial function written in this way, with terms in descending degree, is written in standard form.
- The constants $a_{n}, a_{n-1}, \ldots, a_{0}$ - are the coefficients of the polynomial.
- The term $a_{n} x^{n}$ is the leading term, and a_{0} is the constant term.

Example Graphing Transformations of Monomial Functions

Describe how to transform the graph of an appropriate monomial function $f(x)=a_{n} x^{n}$ into the graph of $h(x)=-(x-2)^{4}+5$.
Sketch $h(x)$ and compute the y-intercept.

Example Graphing Transformations of Monomial Functions

You can obtain the graph of
$h(x)=-(x-2)^{4}+5$ by
shifting the graph of
$f(x)=-x^{4}$ two units to the right and five units up.
The y-intercept of $h(x)$
is $h(0)=-(z)^{4}+5=-11$.

Cubic Functions

$a_{3}>0$

(a)

$$
a_{3}<0
$$

(b)

Quartic Function

$$
a_{4}>0
$$

(a)

$a_{4}<0$

(b)

Local Extrema and Zeros of Polynomial Functions

A polynomial function of degree n has at most $n-1$ local extrema and at most n zeros.

Leading Term Test for Polynomial End Behavior

For any polynomial function $f(x)$ the limits $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ are determined by the degree of the polynomial and its leading coefficient \bigcirc :

Leading Term Test for Polynomial End Behavior

Leading Term Test for Polynomial End Behavior

Example Applying Polynomial Theory

Describe the end behavior of $g(x)=2 x^{4}-3 x^{3}+x-1$

 using limits.
Example Applying Polynomial Theory

Describe the end behavior of $g(x)=2 x^{4}-3 x^{3}+x-1$

 using limits.$$
\lim _{x \rightarrow \pm \infty} g(x)=\infty
$$

Example Finding the Zeros of a Polynomial Function

Find the zeros of $f(x)=2 x^{3}-4 x^{2}-6 x$.

Example Finding the Zeros of a Polynomial Function

Find the zeros of $f(x)=2 x^{3}-4 x^{2}-6 x$.

Solve $f(x)=0$

$$
\begin{aligned}
& 2 x^{3}-4 x^{2}-6 x=0 \\
& 2 x(x+1)(x-3)=0 \\
& x=0, x=-1, x=3
\end{aligned}
$$

Multiplicity of a Zero of a Polynomial Function

If f is a polynomial function and $(x-c)^{m}$
is a factor of f but $(x-c)^{m+1}$ is not, then c is a zero of multiplicity m of f.

Zeros of Odd and Even Multiplicity

If a polynomial function f has a real zero c of odd multiplicity, then the graph of f crosses the x-axis at $(c, 0)$ and the value of f changes sign at $x=c$. If a polynomial function f has a real zero c of even multiplicity, then the graph of f does not cross the x-axis at $(c, 0)$ and the value of f does not change sign at $x=c$.

Example Sketching the Graph of a Factored Polynomial

Sketch the graph of $f(x)=(x+2)^{3}(x-1)^{2}$.

Example Sketching the Graph of a Factored Polynomial

Sketch the graph of $f(x)=(x+2)^{3}(x-1)^{2}$.

The zeros are $x=-2$ and $x=1$.
The graph crosses the x-axis at $x=-2$ because the multiplicity
3 is odd. The graph does not
cross the x-axis at $x=1$ because the multiplicity 2 is even.

Intermediate Value Theorem

If a and b are real numbers with $a<b$ and if f is continuous on the interval $[a, b]$, then f takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some number c in $[a, b]$.
In particular, if $f(a)$ and $f(b)$ have opposite signs (i.e., one is negative and the other is positive, then $f(c)=0$ for some number c in $[a, b]$.

Intermediate Value Theorem

Quick Review

Factor the polynomial into linear factors.

1. $3 x^{2}-11 x-4$
2. $4 x^{3}+10 x^{2}-24 x$

Solve the equation mentally.
3. $x(x-2)=0$
4. $2(x+2)^{2}(x+1)=0$
5. $x^{3}(x+3)(x-5)=0$

Quick Review Solutions

Factor the polynomial into linear factors.

1. $3 x^{2}-11 x-4 \quad(3 x+1)(x-4)$
2. $4 x^{3}+10 x^{2}-24 x$
$2 x(2 x-3)(x+4)$

Solve the equation mentally.

$$
\begin{aligned}
& \text { 3. } x(x-2)=0 \quad x=0, x=2 \\
& \begin{array}{ll}
\text { 4. } 2(x+2)^{2}(x+1)=0 & x=-2, x=-1 \\
\text { 5. } x^{3}(x+3)(x-5)=0 & x=0, x=-3, x=5
\end{array}
\end{aligned}
$$

