

Power Functions with Modeling

What you'll learn about

- Power Functions and Variation
- Monomial Functions and Their Graphs
- Graphs of Power Functions
- Modeling with Power Functions
... and why
Power functions specify the proportional relationships of geometry, chemistry, and physics.

Power Function

Any function that can be written in the form
$f(x)=k \cdot x^{a}$, where k and a are nonzero constants, is a power function. The constant a is the power, and k is the constant of variation, or constant of proportion. We say $f(x)$ varies as the $a^{\text {th }}$ power of x, or $f(x)$ is proportional to the $a^{\text {th }}$ power of x.

Example Analyzing Power Functions

State the power and constant of variation for the function $f(x)=\sqrt[4]{x}$, and graph it.

Example Analyzing Power Functions

State the power and constant of variation for the function $f(x)=\sqrt[4]{x}$, and graph it.
$f(x)=\sqrt[4]{x}=x^{1 / 4}=1 \cdot x^{1 / 4}$
so the power is $1 / 4$ and the constant of variation is 1 .

Monomial Function

Any function that can be written as

$$
f(x)=k \text { or } f(x)=k \cdot x^{n},
$$

where k is a constant and n is a positive integer, is a monomial function.

Example Graphing Monomial Functions

Describe how to obtain the graph of the function $f(x)=3 x^{3}$ from the graph of $g(x)=x^{n}$ with the same power n.

Example Graphing Monomial Functions

Describe how to obtain the graph of the function $f(x)=3 x^{3}$ from the graph of $g(x)=x^{n}$ with the same power n.

We obtain the graph of $f(x)=3 x^{3}$ by vertically stretching the graph of $g(x)=x^{3}$ by a factor of 3 . Both are odd functions.

Graphs of Power Functions

For any power function $f(x)=k \cdot x^{a}$, one of the following three things happens when $x<0$.
$-f$ is undefined for $x<0$.
$-f$ is an even function.
$-f$ is an odd function.

Graphs of Power Functions

Quick Review

Write the following expressions using only positive integer powers.

1. $x^{5 / 3}$
2. r^{3}
3. m^{15}

Write the following expressions in the form $k \cdot x^{a}$ using a single rational number for the power of a.
4. $\sqrt{16 x^{3}}$
5. $\sqrt[3]{\frac{x}{27}}$

Quick Review Solutions

Write the following expressions using only positive integer powers.

1. $x^{5 / 3} \sqrt[3]{x^{5}}$
2. $r^{3} \quad \frac{1}{r^{3}}$
3. $m^{15} \sqrt{m^{3}}$

Write the following expressions in the form $k \cdot x^{a}$ using a single rational number for the power of a.
4. $\sqrt{16 x^{3}} \quad 4 x^{\frac{3}{2}}$
5. $\sqrt[3]{\frac{x}{27}} \quad \frac{1}{3} x^{\frac{1}{3}}$

