2.2

Power Functions with Modeling

Copyright © 2011 Pearson, Inc.

What you'll learn about

- Power Functions and Variation
- Monomial Functions and Their Graphs
- Graphs of Power Functions
- Modeling with Power Functions

... and why

Power functions specify the proportional relationships of geometry, chemistry, and physics.

Power Function

Any function that can be written in the form $f(x) = k \cdot x^a$, where k and a are nonzero constants, is a **power function**. The constant *a* is the **power**, and k is the **constant of variation**, or constant of proportion. We say f(x) varies as the a^{th} power of x, or f(x) is proportional to the a^{th} power of x.

Example Analyzing Power Functions

State the power and constant of variation for the function $f(x) = \sqrt[4]{x}$, and graph it.

Example Analyzing Power Functions

State the power and constant of variation for the function $f(x) = \sqrt[4]{x}$, and graph it.

 $f(x) = \sqrt[4]{x} = x^{1/4} = 1 \cdot x^{1/4}$ so the power is 1/4 and the constant of variation is 1.

Monomial Function

Any function that can be written as

$$f(x) = k \text{ or } f(x) = k \cdot x^n,$$

where *k* is a constant and *n* is a positive integer, is a **monomial function**.

Copyright © 2011 Pearson, Inc.

Example Graphing Monomial Functions

Describe how to obtain the graph of the function $f(x) = 3x^3$ from the graph of $g(x) = x^n$ with the same power *n*.

Example Graphing Monomial Functions

Describe how to obtain the graph of the function $f(x) = 3x^3$ from the graph of $g(x) = x^n$ with the same power *n*.

We obtain the graph of $f(x) = 3x^3$ by vertically stretching the graph of $g(x) = x^3$ by a factor of 3. Both are odd functions.

Graphs of Power Functions

- For any power function $f(x) = k \cdot x^a$, one of the following three things happens when x < 0.
- *f* is undefined for x < 0.
- f is an even function.
- f is an odd function.

Graphs of Power Functions

Quick Review

Write the following expressions using only positive integer powers. 1. $x^{5/3}$

- 2. r^{-3}
- 3. $m^{1.5}$

Write the following expressions in the form $k \cdot x^a$ using a single rational number for the power of *a*.

4. $\sqrt{16x^3}$

5. $\sqrt[3]{\frac{x}{27}}$

Quick Review Solutions

Write the following expressions using only positive integer powers.

1. $x^{5/3}$ $\sqrt[3]{x^5}$ 2. r^{-3} $\frac{1}{r^3}$ 3. $m^{1.5}$ $\sqrt{m^3}$

Write the following expressions in the form $k \cdot x^a$ using a single rational number for the power of *a*.

4.
$$\sqrt{16x^3}$$
 $4x^{\frac{3}{2}}$
5. $\sqrt[3]{\frac{x}{27}}$ $\frac{1}{3}x^{\frac{1}{3}}$

Copyright © 2011 Pearson, Inc.