2.1 Linear and Quadratic Functions and Modeling

What you'll learn about

- Polynomial Functions
- Linear Functions and Their Graphs
- Average Rate of Change
- Linear Correlation and Modeling
- Quadratic Functions and Their Graphs
- Applications of Quadratic Functions

... and why

Many business and economic problems are modeled by linear functions. Quadratic and higher degree polynomial functions are used to model some manufacturing applications.

Polynomial Function

Let *n* be a nonnegative integer and let $a_0, a_1, a_2, \dots, a_{n-1}, a_n$ be real numbers with $a_n \neq 0$. The function given by $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ is a **polynomial function of degree** *n*. The **leading coefficient** is *a*_{*n*}. The zero function f(x) = 0 is a polynomial function. It has no degree and no leading coefficient.

Polynomial Functions of No and Low Degree		
Name	Form	Degree
Zero Function	f(x) = 0	Undefined
Constant Function	$f(x) = a \ (a \neq 0)$	0
Linear Function	$f(x) = ax + b \ (a \neq 0)$	1
Quadratic Function	$f(x) = ax^2 + bx + c \ (a \neq 0)$) 2

Copyright © 2011 Pearson, Inc.

Example Finding an Equation of a Linear Function

Write an equation for the linear function f

such that f(-1) = 2 and f(2) = 3.

Example Finding an Equation of a Linear Function

Write an equation for the linear function f

such that f(-1) = 2 and f(2) = 3.

The line contains the points (-1,2) and (2,3). Find the slope:

$$m = \frac{3-2}{2+1} = \frac{1}{3}$$

Use the point-slope formula and the point (2,3):

$$\begin{array}{l} y - y_1 = m(x - x_1) \\ y - 3 = \frac{1}{3}(x - 2) \\ y = \frac{1}{3}x + \frac{7}{3} \end{array} \qquad f(x) = \frac{1}{3}x + \frac{7}{3} \\ y = \frac{1}{3}x + \frac{7}{3} \end{array}$$

Average Rate of Change

The average rate of change of a function y = f(x) between x = a and x = b, $a \neq b$, is $\frac{f(b) - f(a)}{b - a}$.

Constant Rate of Change Theorem

A function defined on all real numbers is a linear function if and only if it has a constant nonzero average rate of change between any two points on its graph.

Characterizing the Nature of a Linear Function

Point of View

Characterization

Verbal

Algebraic

Graphical

Analytical

polynomial of degree 1

 $f(x) = mx + b \ (m \neq 0)$

slant line with slope *m*, *y*-intercept *b*

function with constant nonzero rate of change *m*: *f* is increasing if m > 0, decreasing if m < 0; initial value of the function = f(0) = b

Properties of the Correlation Coefficient, *r*

- $1. \quad -1 \le r \le 1$
- 2. When r > 0, there is a positive linear correlation.
- 3. When r < 0, there is a negative linear correlation.
- 4. When $|r| \approx 1$, there is a strong linear correlation.
- 5. When $|r| \approx 0$, there is weak or no linear correlation.

Copyright © 2011 Pearson, Inc.

Slide 2.1 - 11

Regression Analysis

- 1. Enter and plot the data (scatter plot).
- 2. Find the regression model that fits the problem situation.
- 3. Superimpose the graph of the regression model on the scatter plot, and observe the fit.
- 4. Use the regression model to make the predictions called for in the problem.

Example Transforming the Squaring Function

Describe how to transform the graph of $f(x) = x^2$ into the

graph of $f(x) = 2(x-2)^2 + 3$.

Example Transforming the Squaring Function

Describe how to transform the graph of $f(x) = x^2$ into the

graph of $f(x) = 2(x-2)^2 + 3$.

The graph of $f(x) = 2(x-2)^2 + 3$ is obtained by vertically stretching the graph of $f(x) = x^2$ by a factor of 2 and translating the resulting graph 2 units right and 3 units up.

Copyright © 2011 Pearson, Inc.

Vertex Form of a Quadratic Equation

Any quadratic function $f(x) = ax^2 + bx + c$, $a \neq 0$, can be written in the **vertex form**

$$f(x) = a(x-h)^2 + k$$

The graph of *f* is a parabola with vertex (*h*, *k*) and axis x = h, where h = -b/(2a) and $k = c - ah^2$. If a > 0, the parabola opens upward, and if a < 0, it opens downward.

Example Finding the Vertex and Axis of a Quadratic Function

Use the vertex form of a quadratic function to find the

vertex and axis of the graph of $f(x) = 2x^2 - 8x + 11$.

Rewrite the equation in vertex form.

Example Finding the Vertex and Axis of a Quadratic Function

Use the vertex form of a quadratic function to find the vertex and axis of the graph of $f(x) = 2x^2 - 8x + 11$. Rewrite the equation in vertex form.

The standard polynomial form of f is $f(x) = 2x^2 - 8x + 11$; a = 2, b = -8, c = 11, and the coordinates of the vertex are $h = -\frac{b}{2a} = \frac{8}{4} = 2$ and $k = f(h) = f(2) = 2(2)^2 - 8(2) + 11 = 3$. The equation of the axis is x = 2, the vertex is (2,3), and the vertex form of f is $f(x) = 2(x-2)^2 + 3$.

Use completing the square to describe the graph of

 $f(x) = -4x^2 + 12x - 8.$

Support your answer graphically.

Use completing the square to describe the graph of

 $f(x) = -4x^2 + 12x - 8.$

Support your answer graphically.

$$f(x) = -4x^{2} + 12x - 8$$

= $-4(x^{2} - 3x) - 8$
= $-4(x^{2} - 3x + () - ()) - 8$
= $-4(x^{2} - 3x + (\frac{3}{2})^{2} - (\frac{3}{2})^{2}) - 8$

Use completing the square to describe the graph of

 $f(x) = -4x^2 + 12x - 8.$

Support your answer graphically.

$$= -4\left(x^{2} - 3x + \frac{9}{4}\right) - \left(-4\right)\left(\frac{9}{4}\right) - 8$$
$$= -4\left(x - \frac{3}{2}\right)^{2} + 1$$

Use completing the square to describe the graph of

 $f(x) = -4x^2 + 12x - 8.$

Support your answer graphically.

The graph of *f* is a downwardopening parabola with vertex (3/2, 1) and axis of symmetry x = 3/2. The *x*-intercepts are at x = 1 and x = 2.

[-4, 6] by [-5, 5]

Characterizing the Nature of a Quadratic Function

Characterization

View

Point of

Verbal polynomial of degree 2

Algebraic

$$f(x) = ax^2 + bx + c$$
 or
 $f(x) = a(x - h)^2 + k \ (a \neq 0)$

Graphical

parabola with vertex (*h*, *k*) and axis x = h; opens upward if a > 0, opens downward if a < 0; initial value = y-intercept = f(0) = c;

$$x\text{-intercepts} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Vertical Free-Fall Motion

The **height** *s* and vertical **velocity** *v* of an object in free fall are given by

$$s(t) = -\frac{1}{2}gt^2 + v_0t + s_0$$
 and $v(t) = -gt + v_0$,

where *t* is time (in seconds), $g \approx 32$ ft/sec² ≈ 9.8 m/sec² is the **acceleration due to gravity**, v_0 is the *initial vertical velocity* of the object, and s_0 is its *initial height*.

1

Quick Review

- 1. Write an equation in slope-intercept form for a line with slope m = 2 and y-intercept 10.
- 2. Write an equation for the line containing the points
 - (-2,3) and (3,4).
- 3. Expand $(x + 6)^2$.
- 4. Expand $(2x 3)^2$.
- 5. Factor $2x^2 + 8x + 8$.

Quick Review Solutions

Write an equation in slope-intercept form for a line with slope m = 2 and y-intercept 10. y = 2x + 10
Write an equation for the line containing the points

$$(-2,3)$$
 and $(3,4)$. $y-4 = \frac{1}{5}(x-3)$

- 3. Expand $(x+6)^2$. $x^2 + 12x + 36$
- 4. Expand $(2x-3)^2$. $4x^2 12x + 9$
- 5. Factor $2x^2 + 8x + 8$. $2(x+2)^2$