

## What you'll learn about

- Transformations
- Vertical and Horizontal Translations
- Reflections Across Axes
- Vertical and Horizontal Stretches and Shrinks
- Combining Transformations
... and why
Studying transformations will help you to understand the relationships between graphs that have similarities but are not the same.


## Transformations

In this section we relate graphs using transformations, which are functions that map real numbers to real numbers.
Rigid transformations, which leave the size and shape of a graph unchanged, include horizontal translations, vertical translations, reflections, or any combination of these.
Nonrigid transformations, which generally distort the shape of a graph, include horizontal or vertical stretches and shrinks.

## Vertical and Horizontal Translations

Let $c$ be a positive real number. Then the following transformations result in translations of the graph of $y=f(x)$.

## Horizontal Translations

$y=f(x-c) \quad$ a translation to the right by $c$ units $y=f(x+c) \quad$ a translation to the left by $c$ units Vertical Translations
$y=f(x)+c \quad$ a translation up by $c$ units
$y=f(x)-c$
a translation down by $c$ units

## Example Vertical Translations

Describe how the graph of $f(x)=|x|$ can be transformed to the graph of $y=|x|-4$.

## Solution

Describe how the graph of $f(x)=|x|$ can be transformed to the graph of $y=|x|-4$.

It is a translation down by 4 units.


## Example Finding Equations for Translations

Each view shows the graph of $y_{1}=x^{3}$ and a vertical or horizontal translation $y_{2}$. Write an equation for $y_{2}$.


## Solution

Each view shows the graph of $y_{1}=x^{3}$ and a vertical or horizontal translation $y_{2}$. Write an equation for $y_{2}$.
(a) $y_{2}=x^{3}-3$
(b) $y_{2}=(x+2)^{3}$
(c) $y_{2}=(x-3)^{3}$

(a)

(b)

(c)

## Reflections

The following transformations result in reflections of the graph of $y=f(x)$ :
Across the $\boldsymbol{x}$-axis

$$
\begin{gathered}
y=-f(x) \\
\text { Across the } y \text {-axis }
\end{gathered}
$$

$$
y=f(-x)
$$

## Graphing Absolute Value Compositions

Given the graph of $y=f(x)$,
the graph $y=|f(x)|$ can be obtained by reflecting the portion of the graph below the $x$-axis across the $x$-axis, leaving the portion above the $x$-axis unchanged;
the graph of $y=f(|x|)$ can be obtained by replacing the portion of the graph to the left of the $y$-axis by a reflection of the portion to the right of the $y$-axis across the $y$-axis, leaving the portion to the right of the $y$-axis unchanged. (The result will show even symmetry.)

## Stretches and Shrinks

Let $c$ be a positive real number. Then the following transformations result in stretches or shrinks of the graph of $y=f(x)$ :

## Horizontal Stretches or Shrinks

$$
y=f\left(\frac{x}{c}\right) \quad\left\{\begin{array}{l}
\text { a stretch by a factor of } c \text { if } c>1 \\
\text { a shrink by a factor of } c \text { if } c<1
\end{array}\right.
$$

## Vertical Stretches or Shrinks

$$
y=c \cdot f(x) \quad\left\{\begin{array}{l}
\text { a stretch by a factor of } c \text { if } c>1 \\
\text { a shrink by a factor of } c \text { if } c<1
\end{array}\right.
$$

## Example Finding Equations for Stretches and Shrinks

Let $C_{1}$ be the curve defined by $y_{1}=x^{3}+3$. Find equations for the following non-rigid transformations of $C_{1}$ :
(a) $C_{2}$ is a vertical stretch of $C_{1}$ by a factor of 4 .
(b) $C_{3}$ is a horizontal shrink of $C_{1}$ by a factor of $1 / 3$.

## Solution

Let $C_{1}$ be the curve defined by $y_{1}=x^{3}+3$. Find equations for the following non-rigid transformations of $C_{1}$ :
(a) $C_{2}$ is a vertical stretch of $C_{1}$ by a factor of 4.
(b) $C_{3}$ is a horizontal shrink of $C_{1}$ by a factor of $1 / 3$.

$$
\begin{array}{rlrl}
\text { (a) } y_{2} & =4 \cdot f(x) & \text { (b) } y_{3} & =f\left(\frac{x}{1 / 3}\right) \\
& =4\left(x^{3}+3\right) & & =f(3 x) \\
& =4 x^{3}+12 & & =(3 x)^{3}+3 \\
& & =27 x^{3}+3
\end{array}
$$

## Example Combining Transformations in Order

The graph of $y=x^{2}$ undergoes the following transformations, in order.

Find the equation of the graph that results.

- a horizontal shift 5 units to the left
- a vertical stretch by a factor of 3
- a vertical translation 4 units up


## Solution

The graph of $y=x^{2}$ undergoes the following transformations, in order.
Find the equation of the graph that results.

- a horizontal shift 5 units to the left
- a vertical stretch by a factor of 3
- a vertical translation 4 units up
$x^{2} \Rightarrow(x+5)^{2} \Rightarrow 3(x+5)^{2} \Rightarrow 3(x+5)^{2}+4$
Expanding the final expression: $y=3 x^{2}+30 x+79$


## Example Combining Transformations in Order

Describe how to transform the graph of $y=f(x)$ shown to the graph of $y=-f(x-2)+4$.


## Solution

Describe how to transform the graph of $y=f(x)$ shown to the graph of $y=-f(x-2)+4$.


a. a horizontal shift right 2 units to get $y=f(x-2)$

## Solution (continued)

Describe how to transform the graph of $y=f(x)$ shown to the graph of $y=-f(x-2)+4$.

b. a reflection over the $x$-axis to get $y=-f(x-2)$

c. a vertical shift up 4 units to get $y=-f(x-2)+4$

## Quick Review

Write the expression as a binomial squared.

1. $x^{2}+4 x+4$
2. $x^{2}-2 x+1$
3. $4 x^{2}+36 x+81$

Perform the indicated operations and simplify.
4. $(x-1)^{2}+(x-1)+2$
5. $(x-1)^{3}+(x-1)+2$

## Quick Review Solutions

Write the expression as a binomial squared.

1. $x^{2}+4 x+4 \quad(x+2)^{2}$
2. $x^{2}-2 x+1 \quad(x-1)^{2}$
3. $4 x^{2}+36 x+81 \quad(2 x+9)^{2}$

Perform the indicated operations and simplify.
4. $(x-1)^{2}+(x-1)+2 \quad x^{2}-x+2$
5. $(x-1)^{3}+(x-1)+2 \quad x^{3}-3 x^{2}+4 x$

