1.6 Graphical Transformations

Copyright © 2011 Pearson, Inc.

What you'll learn about

- Transformations
- Vertical and Horizontal Translations
- Reflections Across Axes
- Vertical and Horizontal Stretches and Shrinks
- Combining Transformations

... and why

Studying transformations will help you to understand the relationships between graphs that have similarities but are not the same.

Transformations

In this section we relate graphs using **transformations**, which are functions that map real numbers to real numbers.

Rigid transformations, which leave the size and shape of a graph unchanged, include horizontal translations, vertical translations, reflections, or any combination of these.

Nonrigid transformations, which generally distort the shape of a graph, include horizontal or vertical stretches and shrinks.

Vertical and Horizontal Translations

- Let *c* be a positive real number. Then the following transformations result in translations of the graph of y = f(x). Horizontal Translations
- y = f(x c)a translation to the right by c unitsy = f(x + c)a translation to the left by c units**Vertical Translations**y = f(x) + ca translation up by c unitsy = f(x) ca translation down by c units

Example Vertical Translations

Describe how the graph of f(x) = |x| can be transformed to the graph of y = |x| - 4.

Describe how the graph of f(x) = |x| can be transformed to the graph of y = |x| - 4.

It is a translation down by 4 units.

Example Finding Equations for Translations

Each view shows the graph of $y_1 = x^3$ and a vertical or horizontal translation y_2 . Write an equation for y_2 .

Copyright © 2011 Pearson, Inc.

Each view shows the graph of $y_1 = x^3$ and a vertical or horizontal translation y_2 . Write an equation for y_2 .

(a)
$$y_2 = x^3 - 3$$
 (b) $y_2 = (x+2)^3$ (c) $y_2 = (x-3)^3$

Copyright © 2011 Pearson, Inc.

Reflections

The following transformations result in reflections of the graph of y = f(x): **Across the** *x***-axis**

y = -f(x) **Across the y-axis**

y = f(-x)

Copyright © 2011 Pearson, Inc.

Graphing Absolute Value Compositions

Given the graph of y = f(x),

the graph y = |f(x)| can be obtained by reflecting the portion of the graph below the *x*-axis across the *x*-axis, leaving the portion above the *x*-axis unchanged;

the graph of y = f(/x/) can be obtained by replacing the portion of the graph to the left of the *y*-axis by a reflection of the portion to the right of the *y*-axis across the *y*-axis, leaving the portion to the right of the *y*-axis unchanged. (The result will show even symmetry.) Let *c* be a positive real number. Then the following transformations result in stretches or shrinks of the graph of y = f(x): **Horizontal Stretches or Shrinks**

 $y = f\left(\frac{x}{c}\right) \qquad \begin{cases} \text{a stretch by a factor of } c & \text{if } c > 1 \\ \text{a shrink by a factor of } c & \text{if } c < 1 \end{cases}$

Vertical Stretches or Shrinks

 $y = c \cdot f(x)$

 $\begin{cases} a \text{ stretch by a factor of } c & \text{if } c > 1 \\ a \text{ shrink by a factor of } c & \text{if } c < 1 \end{cases}$

Example Finding Equations for Stretches and Shrinks

Let C₁ be the curve defined by y₁ = x³ + 3. Find equations for the following non-rigid transformations of C₁:
(a) C₂ is a vertical stretch of C₁ by a factor of 4.
(b) C₃ is a horizontal shrink of C₁ by a factor of 1/3.

Let C₁ be the curve defined by y₁ = x³ + 3. Find equations for the following non-rigid transformations of C₁:
(a) C₂ is a vertical stretch of C₁ by a factor of 4.
(b) C₃ is a horizontal shrink of C₁ by a factor of 1/3.

(a)
$$y_2 = 4 \cdot f(x)$$

 $= 4(x^3 + 3)$
 $= 4x^3 + 12$
(b) $y_3 = f\left(\frac{x}{1/3}\right)$
 $= f(3x)$
 $= (3x)^3 + 3$

$$=27x^{3}+3$$

Example **Combining Transformations in Order**

The graph of $y = x^2$ undergoes the following transformations, in order.

Find the equation of the graph that results.

- a horizontal shift 5 units to the left
- a vertical stretch by a factor of 3
- a vertical translation 4 units up

The graph of $y = x^2$ undergoes the following transformations, in order.

Find the equation of the graph that results.

- a horizontal shift 5 units to the left
- a vertical stretch by a factor of 3
- a vertical translation 4 units up

 $x^2 \Rightarrow (x+5)^2 \Rightarrow 3(x+5)^2 \Rightarrow 3(x+5)^2 + 4$ Expanding the final expression: $y = 3x^2 + 30x + 79$

Example **Combining Transformations in Order**

Describe how to transform the graph of y = f(x)shown to the graph of y = -f(x-2)+4.

Describe how to transform the graph of y = f(x)shown to the graph of y = -f(x-2)+4.

a. a horizontal shift right 2 units to get y = f(x - 2)

Copyright © 2011 Pearson, Inc.

Solution (continued)

Describe how to transform the graph of y = f(x)shown to the graph of y = -f(x-2)+4.

b. a reflection over the x-axis to get y = -f(x - 2)

c. a vertical shift up 4 units to get y = -f(x - 2) + 4

Copyright © 2011 Pearson, Inc.

Quick Review

Write the expression as a binomial squared.

1. $x^{2} + 4x + 4$ 2. $x^{2} - 2x + 1$ 3. $4x^{2} + 36x + 81$

Perform the indicated operations and simplify.

4.
$$(x-1)^2 + (x-1) + 2$$

5.
$$(x-1)^3 + (x-1) + 2$$

Quick Review Solutions

Write the expression as a binomial squared.

1. $x^{2} + 4x + 4$ $(x + 2)^{2}$ 2. $x^{2} - 2x + 1$ $(x - 1)^{2}$ 3. $4x^{2} + 36x + 81$ $(2x + 9)^{2}$

Perform the indicated operations and simplify.

4.
$$(x-1)^2 + (x-1) + 2$$
 $x^2 - x + 2$
5. $(x-1)^3 + (x-1) + 2$ $x^3 - 3x^2 + 4x$