

Functions and

 TheirProperties

What you'll learn about

- Function Definition and Notation
- Domain and Range
- Continuity
- Increasing and Decreasing Functions
- Boundedness
- Local and Absolute Extrema
- Symmetry
- Asymptotes
- End Behavior
... and why
Functions and graphs form the basis for understanding the mathematics and applications you will see both in your work place and in coursework in college.

Function, Domain, and Range

A function from a set D to a set R is a rule that assigns to every element in D a unique element in R. The set D of all input values is the domain of the function, and the set R of all output values is the range of the function.

Function Notation

To indicate that y comes from the function acting on x, we use Euler's elegant function notation $y=f(x)$ (which we read as " \boldsymbol{y} equals \boldsymbol{f} of \boldsymbol{x} " or "the value of f at $x^{\prime \prime}$).
Here x is the independent variable and y is the dependent variable.

Mapping

Example Seeing a Function Graphically

Of the three graphs shown below, which is not the graph of a function?

[-4.7, 4.7] by $[-3.3,3.3]$
(a)

$[-4.7,4.7]$ by $[-3.3,3.3]$
(b)

$[-4.7,4.7]$ by $[-3.3,3.3]$
(c)

Solution

Of the three graphs shown below, which is not the graph of a function?

$[-4.7,4.7]$ by $[-3.3,3.3]$
(a)

$[-4.7,4.7]$ by $[-3.3,3.3]$
(b)

(c)

The graph in (c) is not the graph of a function. There are three points on the graph with x-coordinates 0 .

Vertical Line Test

A graph (set of points (x, y)) in the $x y$-plane defines y as a function of x if and only if no vertical line intersects the graph in more than one point.

Agreement

Unless we are dealing with a model that necessitates a restricted domain, we will assume that the domain of a function defined by an algebraic expression is the same as the domain of the algebraic expression, the implied domain. For models, we will use a domain that fits the situation, the relevant domain.

Example Finding the Domain of a Function

Find the domain of the function.
$f(x)=\sqrt{x+2}$

Solution

Find the domain of the function.
$f(x)=\sqrt{x+2}$

Solve algebraically:
The expression under a radical may not be negative.
$x+2 \geq 0$
$x \geq-2$
The domain of f is the interval $[-2, \infty)$.

Example Finding the Range of a Function

Find the range of the function $f(x)=\frac{2}{x}$.

Solution

Find the range of the function $f(x)=\frac{2}{x}$.

Solve Graphically:
The graph of $y=\frac{2}{x}$ shows that the range is all real numbers except 0 . The range in interval notation is
$(-\infty, 0) \cup(0, \infty)$.

Continuity

Continuous at all x

Removable discontinuity

Removable discontinuity

Jump discontinuity

Infinite discontinuity

Example Identifying Points of Discontinuity

Which of the following figures shows functions that are discontinuous at $x=2$?

$[-5,5]$ by $[-10,10]$

[-9.4, 9.4] by [-6.2, 6.2]

Solution

Which of the following figures shows functions that are discontinuous at $x=2$?

$$
[-5,5] \text { by }[-10,10]
$$

$[-9.4,9.4]$ by $[-6.2,6.2]$

The function on the right is not defined at $x=2$ and can not be continuous there. This is a removable discontinuity.

Increasing and Decreasing Functions

Increasing

Constant

Decreasing

Decreasing on $(-\infty,-2]$
Constant on [-2, 2]
Increasing on $[2, \infty)$

Increasing, Decreasing, and Constant Function on an Interval

A function f is increasing on an interval if, for any two points in the interval, a positive change in x results in a positive change in $f(x)$.

A function f is decreasing on an interval if, for any two points in the interval, a positive change in x results in a negative change in $f(x)$.

A function f is constant on an interval if, for any two points in the interval, a positive change in x results in a zero change in $f(x)$.

Example Analyzing a Function for Increasing-Decreasing Behavior

$\left\{\begin{array}{cl}-5 & \text { if } x \leq-3\end{array}\right.$
Given $f(x)=|x+3|-|x-2|= \begin{cases}2 x+1 & \text { if }-3<x<2\end{cases}$ 5 if $x \geq 2$
Identify the intervals on which $f(x)$ is increasing, decreasing and constant.

Solution $\quad \begin{cases}-5 & \text { if } x \leq-3\end{cases}$

Given $f(x)=|x+3|-|x-2|=\left\{\begin{array}{cl}2 x+1 & \text { if }-3<x<2 \\ 5 & \text { if } x \geq 2\end{array}\right.$
Identify the intervals on which $f(x)$ is increasing, decreasing and constant.

The graph suggests, $f(x)$ is constant on $(-\infty,-3]$ and $(2, \infty)$.
On the interval $[-3,2] f(x)$ appears to be increasing.

Lower Bound, Upper Bound and Bounded

A function f is bounded below if there is some number b that is less than or equal to every number in the range of f. Any such number b is called a lower bound of f.

A function f is bounded above if there is some number B that is greater than or equal to every number in the range of f. Any such number B is called a upper bound of f.

A function f is bounded if it is bounded both above and below.

Local and Absolute Extrema

A local maximum of a function f is a value $f(c)$ that is greater than or equal to all range values of f on some open interval containing c. If $f(c)$ is greater than or equal to all range values of f, then $f(c)$ is the maximum (or absolute maximum) value of f.

A local minimum of a function f is a value $f(c)$ that is less than or equal to all range values of f on some open interval containing c. If $f(c)$ is less than or equal to all range values of f, then $f(c)$ is the minimum (or absolute minimum) value of f.

Local extrema are also called relative extrema.

Example Identifying Local Extrema

Decide whether $f(x)=x^{4}-7 x^{2}+6 x$ has any local maxima or minima. If so, find each local maximum value or minimum value and the value at which each occurs.

Solution

The graph of $f(x)=x^{4}-7 x^{2}+6 x$ suggests that there are two local maximum values and one local minimum value. We use the graphing calculator to approximate local minima as -24.06 (which occurs at $x<-2.06$) and -1.77 (which occurs at $x>1.60$). Similarly, we identify the (approximate) local maximum as 1.32 (which occurs at $x>0.46$).

Symmetry with respect to the y-axis

Example: $f(x)=x^{2}$

Numerically	
x	$f(x)$
-3	9
-2	4
-1	1
1	1
2	4
3	9

Algebraically
For all x in the domain of f,

$$
f(-x)=f(x)
$$

Functions with this property (for example, x^{n}, n even) are even functions.

Symmetry with respect to the x-axis

Example: $x=y^{2}$

Numerically

x	y
9	-3
4	-2
1	-1
1	1
4	2
9	3

Algebraically

Graphs with this kind of symmetry are not functions (except the zero function), but we can say that $(x,-y)$ is on the graph whenever (x, y) is on the graph.

Symmetry with respect to the origin

Example: $f(x)=x^{3}$

Numerically

x	y
-3	-27
-2	-8
-1	-1
1	1
2	8
3	27

Algebraically
For all x in the domain of f,

$$
f(-x)=-f(x)
$$

Functions with this property (for example, x^{n}, n odd) are odd functions.

Example Checking Functions for Symmetry

Tell whether the following function is odd, even, or neither.
$f(x)=x^{2}+3$

Solution

Tell whether the following function is odd, even, or neither.
$f(x)=x^{2}+3$

Solve Algebraically:
Find $f(-x)$.

$$
\begin{aligned}
f(-x) & =(-x)^{2}+3 \\
& =x^{2}+3 \\
& =f(x)
\end{aligned}
$$

The function is even.

Horizontal and Vertical Asymptotes

The line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if $f(x)$ approaches a limit of b as x approaches $+\infty$ or $-\infty$.
In limit notation: $\lim _{x \rightarrow-\infty} f(x)=b$ or $\lim _{x \rightarrow \infty} f(x)=b$.

The line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if $f(x)$ approaches a limit of $+\infty$ or $-\infty$ as x approaches a from either direction.

In limit notation: $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$.

Example Identifying the Asymptotes of a Graph

१११११००० asymptotes of the graph of

$$
y=\frac{x}{x^{2}-x-2} .
$$

Solution

$\square \square \square \square \square y, \square_{x^{2}-x-2} \operatorname{asymptates}^{x}$ of the graph of
$y=\frac{x}{x^{2}-x-2}$ is undefined at $x=-1$ and $x=2$,
These are the vertical asymptotes.
$\lim _{x \rightarrow \infty} \frac{x}{x^{2}-x-2}=0$
So $y=0$ is a horizontal asymptote.
$\lim _{x \rightarrow-\infty} \frac{x}{x^{2}-x-2}=0$
Again $y=0$ is a horizontal asymptote.

Quick Review

Solve the equation or inequality.

1. $x^{2}-9<0$
2. $x^{2}-16=0$

Find all values of x algebraically for which the algebraic expression is not defined.
3. $\frac{1}{x-3}$
4. $\sqrt{x-3}$
5. $\frac{\sqrt{x+1}}{\sqrt{x-3}}$

Quick Review Solutions

Solve the equation or inequality.

$$
\begin{array}{ll}
\text { 1. } x^{2}-9<0 & -3<x<3 \\
\text { 2. } x^{2}-16=0 & x= \pm 4
\end{array}
$$

Find all values of x algebraically for which the algebraic expression is not defined.
3. $\frac{1}{x-3} \quad x=3$
4. $\sqrt{x-3} \quad x<3$
5. $\frac{\sqrt{x+1}}{\sqrt{x-3}} \quad x<3$

