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What you’ll learn about

Function Definition and Notation
Domain and Range

Continuity

Increasing and Decreasing Functions
= Boundedness

= Local and Absolute Extrema

= Symmetry

= Asymptotes

= End Behavior

... and why

Functions and graphs form the basis for understanding
the mathematics and applications you will see both in
your work place and in coursework in college.
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Function, Domain, and Range

A function from a set D to a set R Is a rule that
assigns to every element in D a unique element
In R. The set D of all input values is the domain

of the function, and the set R of all output values
IS the range of the function.
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Function Notation

To indicate that y comes from the function acting on X,
we use Euler’s elegant function notation y = f (x)
(which we read as “y equals f of X” or “the value of f
at x).

Here x IS the independent variable and y is the
dependent variable.
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e Mapping

- -

Domain Range
A function Not a function

() (b)
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B8 Example Seeing a Function
Graphically

Of the three graphs shown below, which Is not the graph
of a function?

;_’_________.
/
[-4.7, 4.7] by [-3.3, 3.3] [4.7, 4.7] by [-3.3, 3.3] [4.7,4.7] by [-3.3, 3.3]
(a) (b) (c)

Copyright © 2011 Pearson, Inc. Slide1.2-6



Solution

Of the three graphs shown below, which iIs not the graph
of a function?

[ I [ ——
- B /
[—4.7, 4.7] by [-3.3, 3.3] [4.7, 4.7] by [-3.3, 3.3] [—4.7,4.7] by [-3.3, 3.3]
(a) (b) (c)

The graph in (c) Is not the graph of a function. There are
three points on the graph with x-coordinates O.
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Vertical Line Test

A graph (set of points (x,y)) In the xy-plane
defines y as a function of x if and only If no

vertical line intersects the graph in more than one
point.
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Agreement

Unless we are dealing with a model that
necessitates a restricted domain, we will assume
that the domain of a function defined by an
algebraic expression Is the same as the domain of
the algebraic expression, the implied domain.
For models, we will use a domain that fits the
situation, the relevant domain.
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Example Finding the Domalin of a
Function

Find the domain of the function.

f(X)=+X+2
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Solution

Find the domain of the function.

f(X)=+X+2

Solve algebraically:

The expression under a radical may not be negative.
X+22>0

X>—2

The domain of f Is the interval [ — 2, ).
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Example Finding the Range of a
Function

Find the range of the function f (Xx) = E
X
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Solution

Find the range of the function f (Xx) = Z
X

Solve Graphically:

The graph of y = % shows that the

range is all real numbers except 0.
The range In interval notation Is

(0)(0.2)
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[-5, 51 by [-3, 3]
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Continuity

o fla) -

Continuous at all x Removable discontinuity
\ / \ /\/ | \__‘; X
a
VA RN o a g
\/a/ N \/ > \\
Removable discontinuity Jump discontinuity Infinite discontinuity
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Example Identifying Points of
Discontinuity

Which of the following figures shows functions that are
discontinuous at x = 2?

\ ./
N

[-5, 5] by [-10, 10] [-9.4, 9.4] by [-6.2, 6.2]
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Solution

Which of the following figures shows functions that are
discontinuous at x = 2?

\_
X

[-5, 5] by [-10, 10] [-9.4, 9.4] by [-6.2, 6.2]

S~

AN

The function on the right is not defined at x = 2 and
can not be continuous there. This 1s a removable
discontinuity.
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Increasing and Decreasing Functions

-1
-2
-3

Increasing

Constant
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Decreasing

-
T

[
12345

Decreasing on (-0, —2]

Constant on [-2, 2]
Increasing on [2, ©)
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e Increasing, Decreasing, and Constant
Function on an Interval

A function f is Iincreasing on an interval if, for any two
points In the interval, a positive change in x results in a
positive change in f(x).

A function f is decreasing on an interval if, for any two
points in the interval, a positive change in x results in a
negative change in f(x).

A function f is constant on an interval if, for any two
points in the interval, a positive change in x results in a
zero change in f(x).
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B&s Example Analyzing a Function for
Increasing-Decreasing

Behavior
-5 ifx<-3
Givenf(x):‘x+3‘—‘x—2‘:42x+1 If —3<x<?2
5 1fx>2

.

|dentify the intervals on which f (x) Is increasing,
decreasing and constant.
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& Solution
Given f (x) =[x +3—|x—2|=+

-5 1fx<=-3
2X+1 If —3<x<?2
5 1fx>2

Identify the intervals on which f (x) Is increasing,

decreasing and constant.

he graph suggests, f(X)
IS constant on (— oo, —3]

and (Z,oo)

On the interval [-3,2] f(X)

appears to be increasing.
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[—4.7,4.7]

by [—6, 6]
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2% Lower Bound, Upper Bound and
Bounded

A function f is bounded below If there is some number
b that Is less than or equal to every number in the range

of f. Any such number

0 1S called a lower bound of f.

A function f Is bounded above If there IS some number

B that is greater than or

equal to every number in the

range of f. Any such number B is called a upper bound

of f.

A function f I1s bounded If it i1s bounded both above and

below.
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_ocal and Absolute Extrema

A local maximum of a function f is a value f (c) that Is
greater than or equal to all range values of f on some
open interval containing c. If f (c) Is greater than or equal
to all range values of f, then f (c) Is the maximum (or
absolute maximum) value of f.

A local minimum of a function f is a value f (c) that Is
less than or equal to all range values of f on some open
Interval containing c. If f (c) is less than or equal to all
range values of f, then f (c) Is the minimum (or absolute
minimum) value of f.

Local extrema are also called relative extrema.
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Example Identifying Local Extrema

Decide whether f (x) = x*— 7x% + 6x has any local
maxima or minima. If so, find each local maximum value
or minimum Vvalue and the value at which each occurs.
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Solution

The graph of f (x) = x* — 7x? + 6x suggests that there are
two local maximum values and one local minimum value.
We use the graphing calculator to approximate local
minima as —24.06 (which occurs at x < —-2.06) and —1.77
(which occurs at x > 1.60). Similarly, we identify the

(approximate) local maximum as 1.32 (which occurs at
X > 0.46).
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Symmetry with respect to the y-axis

Example: f(x) = x?

Graphically Numerically
) x  fx)
— -3 9
_ —2 4
(2, y) h—V——4 (x,) —1 1
i B i 1 1
L d NA Lo 2 4
—X | X 3 9
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Algebraically
For all x in the domain of f,

f(=x) =f(x)

Functions with this property (for example,
x" n even) are even functions.

Slide 1.2 - 25



Symmetry with respect to the x-axis

Example: x = y?

Graphically Numerically Algebraically
% X y Graphs with this kind of symmetry are not
o 3 functions (except the zero function), but we
B B can say that (x, —y) is on the graph whenever
~ (x, ) 4 —2 (x, y) is on the graph.
IR = i A 1 1
Y |.X
L (x,—y) 1 1
B 4 2
9 3
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Symmetry with respect to the origin

Example: f(x)

Graphically

y
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— 43
Numerically
X y

-3 =27

-2 —8

—1 —1

1 1

2 8

3 27

Algebraically

For all x in the domain of f,

f(=x) = =f(x).

Functions with this property (for example, x",
n odd) are odd functions.
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Example Checking Functions for
Symmetry

Tell whether the following function Is odd, even, or neither.
f(x)=x"+3
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Solution

Tell whether the following function Is odd, even, or neither.
f(x)=x"+3

Solve Algebraically:
Find f(—x).

f=x)= (=30’ +3
—x*+3
= f(x) The function 1s even.
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B8 orizontal and Vertical Asymptotes

The line y =Db is a horizontal asymptote of the graph of a functiony = f (x)
If f (x) approaches a limit of b as x approaches +oo or -oo.
In limit notation: lim f(x) =b or lim f (x) =bh.

The line x = a Is a vertical asymptote of the graph of a functiony = f (x)
If f (X) approaches a limit of +co or -co as x approaches a from either
direction.

In limit notation: lim f (x) =40 or lim f (x) = +oo.
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Example Identifying the Asymptotes
of a Graph

bbby O UL
0000000 asymptotes of the graph of

X

y_xz—x—2°
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Solution
DDDDDDDDDDDDDDDDDDDDDDDDDDD

00000 @%B—asympmtes of the graph of

X —=x—-2

y = X 1s undefined at x = —1 and x = 2,

X —x—2
These are the vertical asymptotes.

X
lIim : =0
x>0 x° —x —2

So y = 0 1s a horizontal asymptote.

X
lim : =0
x>0 X —x —2

Again y = 0 1s a horizontal asymptote.
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Quick Review
Solve the equation or inequality.

1.x>-9<0
2.x°-16=0

Find all values of x algebraically for which

the algebraic expression 1s not defined.
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Quick Review Solutions
Solve the equation or inequality.

1.x>’-9<0 —3<x<3
2.x2-16=0 x=+4

Find all values of x algebraically for which

the algebraic expression 1s not defined.
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