P.7 Solving Inequalities Algebraically and Graphically

What you'll learn about

- Solving Absolute Value Inequalities
- Solving Quadratic Inequalities
- Approximating Solutions to Inequalities
- Projectile Motion

... and why

These techniques are involved in using a graphing utility to solve inequalities in this textbook.

Solving Absolute Value Inequalities

Let u be an algebraic expression in x and let a be a real number with $a \ge 0$.

- 1. If |u| < a, then u is in the interval (-a, a). That is, |u| < a if and only if -a < u < a.
- 2. If |u| > a, then u is in the interval $(-\infty, -a)$ or (a, ∞) . That is, |u| > a if and only if u < -a or u > a.

The inequalities < and > can be replaced with \le and \ge , respectively.

Example Solving an Absolute Value Inequality

Solve
$$|x+3| < 5$$
.

Solution

Solve
$$|x+3| < 5$$
.

$$|x+3| < 5$$
 $-5 < x+3 < 5$
 $-8 < x < 2$

As an interval the solution in (-8, 2).

Example Solving a Quadratic Inequality

Solve $5x^2 - 11x \ge 12$.

Solution

$$5x^2 - 11x - 12 \ge 0$$

$$5x^2 - 11x - 12 = 0$$

$$(5x+4)(x-3)=0$$

$$x = -\frac{4}{5} \text{ or } x = 3$$

Use these solutions and a sketch of the equation $y = 5x^2 - 11x - 12$ to find the solution to the

inequality in interval form
$$\left(-\infty, -\frac{4}{5}\right] \cup \left[3, \infty\right)$$
.

Projectile Motion

Suppose an object is launched vertically from a point s_0 feet above the ground with an initial velocity of v_0 feet per second. The vertical position s (in feet) of the object t seconds after it is launched is

$$s = -16t^2 + v_0t + s_0.$$

Example Finding Height of a Projectile

A projectile is launched straight up from ground level with an initial velocity of 288ft/sec.

- (a) When will the projectile's height above ground be 1152 ft?
- **(b)** When will the projectile's height above ground be at least 1152 ft?

Solution

Here $s_0 = 0$ and $v_0 = 288$. So the projectile's height is $S = -16t^2 + 288t$.

(a) Determine when s = 1152.

$$s = -16t^{2} + 288t$$

$$1152 = -16t^{2} + 288t$$

$$16t^{2} - 288t + 1152 = 0$$

$$t^{2} - 18t + 72 = 0$$

$$(t - 6)(t - 12) = 0$$

$$t = 6 \text{ or } t = 12$$

Determine when s = 1152.

Solution continued

The projectile is 1152 ft above ground twice; the first time at t = 6 sec on the way up, and the second time at t = 12 sec on the way down.

(b) The projectile will be at least 1152 ft above ground when $s \ge 1152$. We can see from the figure together with the algebraic work in (a) that the solution is [6, 12]. This means that the projectile is at least 1152 ft above ground for times between t = 6 sec and t = 12 sec, including 6 and 12 sec.

Quick Review

Solve for *x*.

1.
$$-3 < 2x + 1 < 9$$

2.
$$|2x+1|=3$$

- 3. Factor completely. $4x^2 9$
- 4. Reduce the fraction to lowest terms. $\frac{x^2 49}{x^2 + 7x}$
- 5. Add the fractions and simplify. $\frac{x}{x+1} + \frac{x+2}{x}$

Quick Review Solutions

Solve for *x*.

1.
$$-3 < 2x + 1 < 9$$
 $-2 < x < 4$

2.
$$|2x+1|=3$$
 $x=-2$ or $x=1$

- 3. Factor completely. $4x^2-9$ (2x-3)(2x+3)
- 4. Reduce the fraction to lowest terms. $\frac{x^2-49}{x^2+7x} = \frac{x-7}{x}$
- 5. Add the fractions and simplify. $\frac{x}{x+1} + \frac{x+2}{x} \qquad \frac{2x^2 + 3x + 2}{x^2 + x}$

Chapter Test

1. Write the number in scientific notation.

The diameter of a red blood corpuscle is about 0.000007 meter.

- 2. Find the standard form equation for the circle with center (5, -3) and radius 4.
- 3. Find the slope of the line through the points (-1,-2) and (4,-5).
- 4. Find the equation of the line through (2, -3) and perpendicular to the line 2x + 5y = 3.
- 5. Solve the equation algebraically. $\frac{x-2}{3} + \frac{x+5}{2} = \frac{1}{3}$
- 6. Solve the equation algebraically. $6x^2 + 7x = 3$

Chapter Test

- 7. Solve the equation algebraically. |4x+1|=3
- 8. Solve the inequality. $|3x+4| \ge 2$
- 9. Solve the inequality. $4x^2 + 12x + 9 \ge 0$
- 10. Perform the indicated operation, and write the result in standard form. (5-7i)-(3-2i)

Chapter Test Solutions

- 1. Write the number in scientific notation.
- The diameter of a red blood corpuscle is about 0.000007 meter. 7×10^{-6}
- 2. Find the standard form equation for the circle with center (5, -3) and radius 4. $(x-5)^2 + (y+3)^2 = 16$
- 3. Find the slope of the line through the points (-1,-2) and (4,-5). $-\frac{3}{5}$
- 4. Find the equation of the line through (2, -3) and perpendicular

to the line
$$2x + 5y = 3$$
. $y = \frac{5}{2}x - 8$

- 5. Solve the equation algebraically. $\frac{x-2}{3} + \frac{x+5}{2} = \frac{1}{3}$ $x = -\frac{9}{5}$
- 6. Solve the equation algebraically. $6x^2 + 7x = 3$ $x = \frac{1}{3}$ or $x = -\frac{3}{2}$

Slide P.7 - 17

Chapter Test Solutions

7. Solve the equation algebraically.
$$|4x+1|=3$$
 $x=\frac{1}{2}$ or $x=-1$

8. Solve the inequality.
$$|3x+4| \ge 2$$
 $(-\infty,-2] \cup \left[-\frac{2}{3},\infty\right]$

- 9. Solve the inequality. $4x^2 + 12x + 9 \ge 0$ $(-\infty, \infty)$
- 10. Perform the indicated operation, and write the result in standard form. (5-7i)-(3-2i) 2-5i