

What you'll learn about

- Solving Absolute Value Inequalities
- Solving Quadratic Inequalities
- Approximating Solutions to Inequalities
- Projectile Motion
... and why
These techniques are involved in using a graphing utility to solve inequalities in this textbook.

Solving Absolute Value Inequalities

Let u be an algebraic expression in x and let a be a real number with $a \geq 0$.

1. If $|u|<a$, then u is in the interval $(-a, a)$. That is,

$$
|u|<a \text { if and only if }-a<u<a .
$$

2. If $|u|>a$, then u is in the interval $(-\infty,-a)$ or (a, ∞). That is,

$$
|u|>a \text { if and only if } u<-a \text { or } u>a \text {. }
$$

The inequalities < and > can be replaced with \leq and \geq, respectively.

Example Solving an Absolute Value Inequality

Solve $|x+3|<5$.

Solution

Solve $|x+3|<5$.

$$
\begin{aligned}
& |x+3|<5 \\
& -5<x+3<5 \\
& -8<x<2
\end{aligned}
$$

As an interval the solution in $(-8,2)$.

Example Solving a Quadratic Inequality

Solve $5 x^{2}-11 x \geq 12$.

Solution

$5 x^{2}-11 x-12 \geq 0$
$5 x^{2}-11 x-12=0$
$(5 x+4)(x-3)=0$
$x=-\frac{4}{5}$ or $x=3$

Use these solutions and a sketch of the equation $y=5 x^{2}-11 x-12$ to find the solution to the inequality in interval form $\left(-\infty,-\frac{4}{5}\right] \cup[3, \infty)$.

Projectile Motion

Suppose an object is launched vertically from a point s_{0} feet above the ground with an initial velocity of v_{0} feet per second. The vertical position s (in feet) of the object t seconds after it is launched is

$$
s=-16 t^{2}+v_{0} t+s_{0}
$$

Example Finding Height of a Projectile

A projectile is launched straight up from ground level with an initial velocity of $288 \mathrm{ft} / \mathrm{sec}$.
(a) When will the projectile's height above ground be 1152 ft ?
(b) When will the projectile's height above ground be at least 1152 ft ?

Solution

Here $s_{0}=0$ and $v_{0}=288$. So the projectile's height is
$S=-16 t^{2}+288 t$.
(a) Determine when $s=1152$.

$$
\begin{aligned}
s & =-16 t^{2}+288 t \\
1152 & =-16 t^{2}+288 t
\end{aligned}
$$

$$
16 t^{2}-288 t+1152=0
$$

$$
t^{2}-18 t+72=0
$$

Determine when

$$
(t-6)(t-12)=0
$$

$$
s=1152
$$

$$
t=6 \text { or } t=12
$$

Solution continued

The projectile is 1152 ft above ground twice; the first time at $t=6 \mathrm{sec}$ on the way up, and the second time at t $=12 \mathrm{sec}$ on the way down.

Solution continued

(b) The projectile will be at least 1152 ft above ground when $s \geq 1152$. We can see from the figure together with the algebraic work in (a) that the solution is $[6,12]$. This means that the projectile is at least 1152 ft above ground for times between $t=6 \mathrm{sec}$ and $t=12$ sec , including 6 and 12 sec .

Quick Review

Solve for x.

1. $-3<2 x+1<9$
2. $|2 x+1|=3$
3. Factor completely. $4 x^{2}-9$
4. Reduce the fraction to lowest terms. $\frac{x^{2}-49}{x^{2}+7 x}$
5. Add the fractions and simplify. $\frac{x}{x+1}+\frac{x+2}{x}$

Quick Review Solutions

Solve for x.

1. $-3<2 x+1<9 \quad-2<x<4$
2. $|2 x+1|=3 \quad x=-2$ or $x=1$
3. Factor completely. $4 x^{2}-9 \quad(2 x-3)(2 x+3)$
4. Reduce the fraction to lowest terms. $\frac{x^{2}-49}{x^{2}+7 x} \quad \frac{x-7}{x}$
5. Add the fractions and simplify. $\frac{x}{x+1}+\frac{x+2}{x} \quad \frac{2 x^{2}+3 x+2}{x^{2}+x}$

Chapter Test

1. Write the number in scientific notation.

The diameter of a red blood corpuscle is about 0.000007 meter.
2. Find the standard form equation for the circle with center $(5,-3)$ and radius 4.
3. Find the slope of the line through the points $(-1,-2)$ and $(4,-5)$.
4. Find the equation of the line through $(2,-3)$ and perpendicular to the line $2 x+5 y=3$.
5. Solve the equation algebraically. $\frac{x-2}{3}+\frac{x+5}{2}=\frac{1}{3}$
6. Solve the equation algebraically. $6 x^{2}+7 x=3$

Chapter Test

7. Solve the equation algebraically. $|4 x+1|=3$
8. Solve the inequality. $|3 x+4| \geq 2$
9. Solve the inequality. $4 x^{2}+12 x+9 \geq 0$
10. Perform the indicated operation, and write the result in standard form. $(5-7 i)-(3-2 i)$

Chapter Test Solutions

1. Write the number in scientific notation.

The diameter of a red blood corpuscle is about 0.000007 meter. 7×10^{6}
2 . Find the standard form equation for the circle with center $(5,-3)$
and radius 4 . $(x-5)^{2}+(y+3)^{2}=16$
3. Find the slope of the line through the points $(-1,-2)$ and $(4,-5) .-\frac{3}{5}$
4. Find the equation of the line through $(2,-3)$ and perpendicular
to the line $2 x+5 y=3 . y=\frac{5}{2} x-8$
5. Solve the equation algebraically. $\frac{x-2}{3}+\frac{x+5}{2}=\frac{1}{3} \quad x=-\frac{9}{5}$
6. Solve the equation algebraically. $6 x^{2}+7 x=3 \quad x=\frac{1}{3}$ or $x=-\frac{3}{2}$

Chapter Test Solutions

7. Solve the equation algebraically. $|4 x+1|=3 \quad x=\frac{1}{2}$ or $x=-1$
8. Solve the inequality. $|3 x+4| \geq 2 \quad(-\infty,-2] \cup\left[-\frac{2}{3}, \infty\right)$
9. Solve the inequality. $4 x^{2}+12 x+9 \geq 0 \quad(-\infty, \infty)$
10. Perform the indicated operation, and write the result in standard form. $(5-7 i)-(3-2 i) \quad 2-5 i$
