

Complex Numbers

What you'll learn about

- Complex Numbers
- Operations with Complex Numbers
- Complex Conjugates and Division
- Complex Solutions of Quadratic Equations
... and why
The zeros of polynomials are complex numbers.

Complex Number

A complex number is any number that can be written in the form

$$
a+b i,
$$

where a and b are real numbers. The real number a is the real part, the real number b is the imaginary part, and $a+b i$ is the standard form.

Addition and Subtraction of Complex Numbers

If $a+b i$ and $c+d i$ are two complex numbers, then

Sum: $(a+b i)+(c+d i)=(a+c)+(b+d) i$,

Difference: $(a+b i)-(c+d i)=(a-c)+(b-d) i$.

Example Multiplying Complex Numbers

Find $(3+2 i)(4-i)$.

Solution

Find $(3+2 i)(4-i)$.

$$
\begin{aligned}
& (3+2 i)(4-i) \\
& =12-3 i+8 i-2 i^{2} \\
& =12+5 i-2(-1) \\
& =12+5 i+2 \\
& =14+5 i
\end{aligned}
$$

Complex Conjugate

The complex conjugate of the complex number

$$
z=a+b i
$$

is

$$
z=a+b i=a-b i
$$

Complex Numbers

The multiplicative identity for the complex numbers is $1=1+0 i$.

The multiplicative inverse, or reciprocal, of $z=a+b i$ is

$$
z^{-1}=\frac{1}{z}=\frac{1}{a+b i}=\frac{1}{a+b i} \cdot \frac{a-b i}{a-b i}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
$$

Example Dividing Complex Numbers

Write the complex number in standard form.

$$
\frac{3}{5-i}
$$

$$
\frac{2+i}{3-2 i}
$$

Solution

$\square \square \square \square \square$ the complex number in standard form.

$$
\begin{array}{rlrl}
\frac{3}{5-i} & =\frac{3}{5-i} \cdot \frac{5+i}{5+i} & \frac{2+i}{3-2 i} & =\frac{2+i}{3-2 i} \cdot \frac{3+2 i}{3+2 i} \\
& =\frac{15+3 i}{5^{2}+1^{2}} & & =\frac{6+4 i+3 i+2 i^{2}}{3^{2}+2^{2}} \\
& =\frac{15}{26}+\frac{3}{26} i & & =\frac{4+7 i}{13} \\
& & =\frac{4}{13}+\frac{7}{13} i
\end{array}
$$

Discriminant of a Quadratic Equation

For a quadratic equation $a x^{2}+b x+c=0$, where a, b, and c are real numbers and $a \neq 0$.

- if $b^{2}-4 a c>0$, there are two distinct real solutions.
- if $b^{2}-4 a c=0$, there is one repeated real solution.
- if $b^{2}-4 a c<0$, there is a complex pair of solutions.

Example Solving a Quadratic Equation

Solve $3 x^{2}+4 x+5=0$.

Example Solving a Quadratic Equation

Solve $3 x^{2}+4 x+5=0$.
$a=3, b=4$, and $c=5$
$x=\frac{-4 \pm \sqrt{4^{2}-4(3) 5}}{2(3)}=\frac{-4 \pm \sqrt{-44}}{6}=\frac{-4 \pm 2 i \sqrt{11}}{6}$
So the solutions are $x=-\frac{2}{3}-\frac{\sqrt{11}}{3} i$ and $x=-\frac{2}{3}+\frac{\sqrt{11}}{3} i$.

Quick Review

Add or subtract, and simplify.

1. $(2 x+3)+(-x+3)$
2. $(4 x-3)-(x+4)$

Multiply and simplify.
3. $(x+3)(x-2)$
4. $(x+\sqrt{3})(x-\sqrt{3})$
5. $(2 x+1)(3 x+5)$

Quick Review Solutions

Add or subtract, and simplify.

1. $(2 x+3)+(-x+3) \quad x+6$
2. $(4 x-3)-(x+4) \quad 3 x-7$

Multiply and simplify.
3. $(x+3)(x-2)$
$x^{2}+x-6$
4. $(x+\sqrt{3})(x-\sqrt{3}) x^{2}-3$
5. $(2 x+1)(3 x+5) \quad 6 x^{2}+13 x+5$

