

Lines in the Plane

What you'll learn about

- Slope of a Line
- Point-Slope Form Equation of a Line
- Slope-Intercept Form Equation of a Line
- Graphing Linear Equations in Two Variables
- Parallel and Perpendicular Lines
- Applying Linear Equations in Two Variables
... and why
Linear equations are used extensively in applications involving business and behavioral science.

Slope of a Line

Slope of a Line

The slope of the nonvertical line through the points $\left(x_{1}, y_{1}\right)$
and $\left(x_{2}, y_{2}\right)$ is $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
If the line is vertical, then $x_{1}=x_{2}$ and the slope is undefined.

Example Finding the Slope of a Line

Find the slope of the line containing the points $(3,-2)$ and $(0,1)$.

Example Finding the Slope of a Line

Find the slope of the line containing the points $(3,-2)$ and $(0,1)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(-2)}{0-3}=\frac{3}{-3}=-1
$$

Thus, the slope of the line is -1 .

Point-Slope Form of an Equation of a Line

The point - slope form of

 an equation of a line that passesthrough the point $\left(x_{1}, y_{1}\right)$ and has slope m is$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Slope-Intercept Form of an Equation of a Line

The slope-intercept form of an equation of

 a line with slope m and y-intercept $(0, b)$ is$$
y=m x+b .
$$

Forms of Equations of Lines

General form:

$A x+B y+C=0$,
A and B not both zero
Slope-intercept form:
Point-slope form:
Vertical line:
Horizontal line:

$$
\begin{aligned}
y & =m x+b \\
y-y_{1} & =m\left(x-x_{1}\right) \\
x & =a \\
y & =b
\end{aligned}
$$

Graphing with a Graphing Utility

To draw a graph of an equation using a grapher:

1. Rewrite the equation in the form $y=($ an expression in $x)$.
2. Enter the equation into the grapher.
3. Select an appropriate viewing window.
4. Press the "graph" key.

Viewing Window

UINDOU
 Xmin=-10
 Xmax=10 X5디=1 Ymin=-10 Ymax=10
 Yscl=1
 Xres=1

Parallel and Perpendicular Lines

1. Two nonvertical lines are parallel if and only if their slopes are equal.
2. Two nonvertical lines are perpendicular if and only if their slopes m_{1} and m_{2} are opposite reciprocals.
That is, if and only if $m_{1}=-\frac{1}{m_{2}}$.

Example Finding an Equation of a Parallel Line

Find an equation of a line through $(2,-3)$ that is parallel to $4 x+5 y=10$.

Solution

Find an equation of a line through $(2,-3)$ that is parallel to $4 x+5 y=10$.

Find the slope of $4 x+5 y=10$.
$5 y=-4 x+10$
$y=-\frac{4}{5} x+2 \quad$ The slope of this line is $-\frac{4}{5}$.
Use point-slope form:
$y+3=-\frac{4}{5}(x-2)$ so $y=-\frac{4}{5} x-\frac{7}{5}$

Example Finding an Equation of a Perpendicular Line

Find an equation of a line through $P(-4,5)$ that is perpendicular to the line L with equation $2 x-y=1$.

Solution

Find an equation of a line through $P(-4,5)$ that is perpendicular to the line L with equation $2 x-y=1$.

Find the slope of $2 x-y=1$.
$-y=-2 x+1$
$y=2 x-1 \quad$ Slope is 2 .
Perpendicular slope is $-\frac{1}{2}$. Use point-slope form:
$y-5=-\frac{1}{2}(x-(-2))$ so $y=-\frac{1}{2} x+3$

Example Finding a Linear Model

American's disposable income in trillions of dollars is given in the table on the next slide.
(a) Write a linear equation for Americans' disposable income y in terms of the year x using the points $(2002,8)$ and $(2004,8.9)$.
(b) Use the equation in (a) to estimate Americans' disposable income in 2005.
(c) Use the equation in (a) to predict Americans' disposable income in 2010.
(d) Superimpose a graph of the linear equation in (a) on a scatter plot of the data.

Example Finding a Linear Model

Year	Amount (trillions of dollars)
2002	8
2003	8.4
2004	8.9
2005	9.3
2006	9.9
2007	10.4

Solution

(a) Let $y=m x+b$. Find the slope $m \frac{8.9-8}{2004-2002}=0.45$

Use $(2002,8)$ to find b.

$$
\begin{aligned}
& y=0.45 x+b \\
& 8=0.45(2002)+b \\
& b=8-900.9=-892.9
\end{aligned}
$$

$$
y=0.45 x-892.9
$$

Solution

(b) Find y when $x=2005$.

$$
\begin{aligned}
& y=0.45 x-892.9 \\
& y=0.45(2005)-892.9 \\
& y=9.35
\end{aligned}
$$

So we estimate Americans' disposable income in 2005 to be 9.35 trillion dollars, a little more than the actual amount of 9.3 trillion dollars.

Solution

(c) Find y when $x=2010$.

$$
\begin{aligned}
& y=0.45 x-892.9 \\
& y=0.45(2010)-892.9 \\
& y=11.6
\end{aligned}
$$

So we predict Americans' disposable income in 2010 to be 11.6 trillion dollars.

Solution

(d) Here's the graph and scatter plot.

Quick Review

Solve for x.

1. $-50 x+100=200$
2. $3(1-2 x)+4(x+2)=10$

Solve for y.
3. $2 x-3 y=5$
4. $2 x-3(x+y)=y$
5. Simplify the fraction. $\frac{7-2}{-10-(-3)}$

Quick Review Solutions

Solve for x.

$$
\text { 1. }-50 x+100=200 \quad x=-2
$$

2. $3(1-2 x)+4(x+2)=10 \quad x=\frac{1}{2}$

Solve for y.
3. $2 x-3 y=5 \quad y=\frac{2 x-5}{3}$
4. $2 x-3(x+y)=y \quad y=\frac{-x}{4}$
5. Simplify the fraction. $\frac{7-2}{-10-(-3)}-\frac{5}{7}$

