Lines in the Plane

P.4

What you'll learn about

- Slope of a Line
- Point-Slope Form Equation of a Line
- Slope-Intercept Form Equation of a Line
- Graphing Linear Equations in Two Variables
- Parallel and Perpendicular Lines
- Applying Linear Equations in Two Variables

... and why

Linear equations are used extensively in applications involving business and behavioral science.

Slope of a Line

The slope of the nonvertical line through the points (x_1, y_1)

and
$$(x_{2}, y_{2})$$
 is $m = \frac{\Delta y}{\Delta x} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$.

If the line is vertical, then $x_1 = x_2$ and the slope is undefined.

Example Finding the Slope of a Line

Find the slope of the line containing the points (3, -2) and (0, 1).

Example Finding the Slope of a Line

Find the slope of the line containing the points (3, -2) and (0, 1).

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-2)}{0 - 3} = \frac{3}{-3} = -1$$

Thus, the slope of the line is -1.

Point-Slope Form of an Equation of a Line

The **point - slope form** of an equation of a line that passesthrough the point (x_1, y_1) and has slope *m* is $y - y_1 = m(x - x_1)$.

Slope-Intercept Form of an Equation of a Line

The slope-intercept form of an equation of a line with slope mand y-intercept (0, b) is y = mx + b.

Forms of Equations of Lines

General form:

Slope-intercept form: Point-slope form: Vertical line: Horizontal line: Ax + By + C = 0,A and B not both zero y = mx + b $y - y_1 = m(x - x_1)$ x = ay = b

Graphing with a Graphing Utility

To draw a graph of an equation using a grapher:

- 1. Rewrite the equation in the form y = (an expression in x).
- 2. Enter the equation into the grapher.
- 3. Select an appropriate viewing window.
- 4. Press the "graph" key.

Viewing Window

[-4, 6] by [-3, 5]

Copyright © 2011 Pearson, Inc.

Slide P.4 - 11

Parallel and Perpendicular Lines

- 1. Two nonvertical lines are parallel if and only if their slopes are equal.
- 2. Two nonvertical lines are perpendicular if and only if their slopes m_1 and m_2 are opposite reciprocals.

That is, if and only if $m_1 = -\frac{1}{m_2}$.

Example Finding an Equation of a Parallel Line

Find an equation of a line through (2, -3) that is parallel to 4x + 5y = 10.

Find an equation of a line through (2, -3) that is parallel to 4x + 5y = 10.

Find the slope of
$$4x + 5y = 10$$
.
 $5y = -4x + 10$
 $y = -\frac{4}{5}x + 2$ The slope of this line is $-\frac{4}{5}$.

Use point-slope form:

$$y+3 = -\frac{4}{5}(x-2)$$
 so $y = -\frac{4}{5}x - \frac{7}{5}$

Example Finding an Equation of a Perpendicular Line

Find an equation of a line through P(-4,5) that is

perpendicular to the line L with equation 2x - y = 1.

Find an equation of a line through P(-4,5) that is perpendicular to the line *L* with equation 2x - y = 1.

Find the slope of
$$2x - y = 1$$
.
 $-y = -2x + 1$
 $y = 2x - 1$ Slope is 2.
Perpendicular slope is $-\frac{1}{2}$. Use point-slope form:
 $y - 5 = -\frac{1}{2}(x - (-2))$ so $y = -\frac{1}{2}x + 3$

Example Finding a Linear Model

- American's disposable income in trillions of dollars is given in the table on the next slide.
- (a) Write a linear equation for Americans' disposable income *y* in terms of the year *x* using the points (2002,8) and (2004,8.9).
- (**b**) Use the equation in (a) to estimate Americans' disposable income in 2005.
- (c) Use the equation in (a) to predict Americans' disposable income in 2010.
- (d) Superimpose a graph of the linear equation in (a) on a scatter plot of the data.

Example Finding a Linear Model

Year	Amount
	(trillions of dollars)
2002	8
2003	8.4
2004	8.9
2005	9.3
2006	9.9
2007	10.4

Solution

(a) Let y = mx + b. Find the slope $m \frac{8.9 - 8}{2004 - 2002} = 0.45$

Use (2002, 8) to find *b*.

$$y = 0.45x + b$$

8 = 0.45(2002) + b
$$b = 8 - 900.9 = -892.9$$

$$y = 0.45x - 892.9$$

Copyright © 2011 Pearson, Inc.

Slide P.4 - 19

(b) Find y when x = 2005.

$$y = 0.45x - 892.9$$
$$y = 0.45(2005) - 892.9$$
$$y = 9.35$$

So we estimate Americans' disposable income in 2005 to be 9.35 trillion dollars, a little more than the actual amount of 9.3 trillion dollars.

(c) Find y when
$$x = 2010$$
.
 $y = 0.45x - 892.9$
 $y = 0.45(2010) - 892.9$
 $y = 11.6$

So we predict Americans' disposable income in 2010 to be 11.6 trillion dollars.

Copyright © 2011 Pearson, Inc.

Slide P.4 - 21

Solution

(d) Here's the graph and scatter plot.

[2001,2010] by [5, 15]

Quick Review

Solve for *x*. 1. -50x + 100 = 2002. 3(1-2x) + 4(x+2) = 10Solve for y. 3. 2x - 3y = 54. 2x - 3(x + y) = y7 - 25. Simplify the fraction. -10 - (-3)

Slide P.4 - 23

Quick Review Solutions

Solve for *x*.

1. -50x + 100 = 200 x = -2

2.
$$3(1-2x) + 4(x+2) = 10$$
 $x = \frac{1}{2}$

Solve for *y*.

3.
$$2x - 3y = 5$$
 $y = \frac{2x - 5}{3}$

4.
$$2x - 3(x + y) = y \quad y = \frac{-x}{4}$$

5. Simplify the fraction.
$$\frac{7-2}{-10-(-3)} = -\frac{5}{7}$$