P.2

Cartesian Coordinate System

What you'll learn about

- Cartesian Plane
- Absolute Value of a Real Number
- Distance Formulas
- Midpoint Formulas
- Equations of Circles
- Applications

... and why

These topics provide the foundation for the material that will be covered in this textbook.

The Cartesian Coordinate Plane or Rectangular Coordinate System

Copyright © 2011 Pearson, Inc.

Quadrants у First quadrant P(x, y)y Second quadrant 3 2 **>** *x* -10 3 -3 1 х -2 -3 Third quadrant Fourth quadrant

Absolute Value of a Real Number

The absolute value of a real number *a* is $|a| = \begin{cases} a, \text{ if } a > 0\\ -a \text{ if } a < 0.\\ 0, \text{ if } a = 0 \end{cases}$

Example Using the Definition of Absolute Value

Evaluate:

$|\pi-5|$

Solution

Evaluate:

|-7| = 7because -7 < 0, |-4| = -(-7) = 7

$$|\pi - 5| = -(\pi - 5) = 5 - \pi$$

because $\pi \approx 3.14, \pi - 5 < 0$

Properties of Absolute Value

Let a and b be real numbers. 1. $|a| \ge 0$ 2. |-a| = |a|3. |ab| = |a| |b|4. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, \ b \neq 0$

Distance Formula (Number Line)

Let *a* and *b* be real numbers. The **distance between** *a* **and** *b* is |a - b|.

Note that |a-b| = |b-a|.

Copyright © 2011 Pearson, Inc.

Distance Formula (Coordinate Plane)

The distance *d* between points $P(x_1, y_1)$ and $Q(x_2, y_2)$ in the coordinate plane is $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

The Distance Formula using the Pythagorean Theorem

Example Finding the Distance Between Two Points

P1 (2, 7) and P2 (5, 3)

Solution

P1 (2, 7) and P2 (5, 3)

$$d = \sqrt{(2-5)^2 + (7-3)^2}$$

= $\sqrt{(-3)^2 + (4)^2}$
= $\sqrt{9+16}$
= $\sqrt{25}$
= 5

Midpoint Formula (Number Line)

The midpoint of the line segment with endpoints *a* and *b* is $\frac{a+b}{2}$

Midpoint Formula (Coordinate Plane)

The midpoint of the line segment with endpoints (a,b) and (c,d) is

$$\left(\frac{a+c}{2},\frac{b+d}{2}\right)$$

Copyright © 2011 Pearson, Inc.

Standard Form Equation of a Circle

The standard form equation of a circle with center (h, k) and radius r is $(x-h)^2 + (y-k)^2 = r^2$.

Example Finding Standard Form Equations of Circles

Find the standard form equation of the circlewith center (2, -3) and radius 4.

Example Finding Standard Form Equations of Circles

Find the standard form equation of the circlewith center (2, -3) and radius 4.

$$(x-h)^2 + (y-k)^2 = r^2$$
 where $h = 2$, $k = -3$, and $r = 4$.
Thus the equation is $(x-2)^2 + (y+3)^2 = 16$.

Quick Review

1. Find the distance between $\frac{-5}{4}$ and $\frac{3}{2}$.

Use a calculator to evaluate the expression. Round answers to two decimal places.

2.
$$\sqrt{8^2 + 6^2}$$

3. $\frac{-12 + 8}{2}$
4. $\sqrt{3^2 + 5^2}$
5. $\sqrt{(2-5)^2 + (1-3)^2}$

Quick Review Solutions

1. Find the distance between $\frac{-5}{4}$ and $\frac{3}{2}$. 2.75

Use a calculator to evaluate the expression. Round answers to two decimal places.

2. $\sqrt{8^2 + 6^2}$ 10 3. $\frac{-12 + 8}{2}$ -2 4. $\sqrt{3^2 + 5^2}$ 5.83 5. $\sqrt{(2-5)^2 + (1-3)^2}$ 3.61