P. 2

Cartesian
 Coordinate

System

Wesley

What you'll learn about

- Cartesian Plane
- Absolute Value of a Real Number
- Distance Formulas
- Midpoint Formulas
- Equations of Circles
- Applications
... and why
These topics provide the foundation for the material that will be covered in this textbook.

The Cartesian Coordinate Plane or Rectangular Coordinate System

Quadrants

Absolute Value of a Real Number

The absolute value of a real number \boldsymbol{a} is

$$
|a|=\left\{\begin{array}{l}
a, \text { if } a>0 \\
-a \text { if } a<0 . \\
0, \text { if } a=0
\end{array}\right.
$$

Example Using the Definition of Absolute Value

Evaluate:

$$
|-7|
$$

$$
|\pi-5|
$$

Solution

Evaluate:

$$
|-7|=7
$$

$$
\text { because }-7<0,|-4|=-(-7)=7
$$

$$
|\pi-5|=-(\pi-5)=5-\pi
$$

$$
\text { because } \pi \approx 3.14, \pi-5<0
$$

Properties of Absolute Value

Let a and b be real numbers.

1. $|a| \geq 0$
2. $|-a|=|a|$
3. $|a b|=|a||b|$
4. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}, b \neq 0$

Distance Formula (Number Line)

Let a and b be real numbers.
The distance between \boldsymbol{a} and \boldsymbol{b} is $|a-b|$.

Note that $|a-b|=|b-a|$.

Distance Formula (Coordinate Plane)

The distance d between points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ in the coordinate plane is

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .
$$

The Distance Formula using the Pythagorean Theorem

Example Finding the Distance Between Two Points

P1 $(2,7)$ and P2 $(5,3)$

Solution

P1 $(2,7)$ and P2 $(5,3)$

$$
\begin{aligned}
d & =\sqrt{(2-5)^{2}+(7-3)^{2}} \\
& =\sqrt{(-3)^{2}+(4)^{2}} \\
& =\sqrt{9+16} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

Midpoint Formula (Number Line)

The midpoint of the line segment with endpoints \boldsymbol{a} and \boldsymbol{b} is

$$
\frac{a+b}{2}
$$

Midpoint Formula (Coordinate Plane)

The midpoint of the line segment with endpoints (a, b) and (c, d) is
 $$
\left(\frac{a+c}{2}, \frac{b+d}{2}\right) .
$$

Standard Form Equation of a Circle

The standard form equation of a circle with center (h, k) and radius r is

$$
(x-h)^{2}+(y-k)^{2}=r^{2} .
$$

Standard Form Equation of a Circle

Example Finding Standard Form Equations of Circles

Find the standard form equation of the circlewith center $(2,-3)$ and radius 4 .

Example Finding Standard Form Equations of Circles

Find the standard form equation of the circlewith center $(2,-3)$ and radius 4.
$(x-h)^{2}+(y-k)^{2}=r^{2} \quad$ where $h=2, k=-3$, and $r=4$.
Thus the equation is $(x-2)^{2}+(y+3)^{2}=16$.

Quick Review

1. Find the distance between $\frac{-5}{4}$ and $\frac{3}{2}$.

Use a calculator to evaluate the expression. Round answers to two decimal places.
2. $\sqrt{8^{2}+6^{2}}$
3. $\frac{-12+8}{2}$
4. $\sqrt{3^{2}+5^{2}}$
5. $\sqrt{(2-5)^{2}+(1-3)^{2}}$

Quick Review Solutions

1. Find the distance between $\frac{-5}{4}$ and $\frac{3}{2}$. 2.75

Use a calculator to evaluate the expression. Round answers to two decimal places.
2. $\sqrt{8^{2}+6^{2}} \quad 10$
3. $\frac{-12+8}{2}-2$
4. $\sqrt{3^{2}+5^{2}} \quad 5.83$
5. $\sqrt{(2-5)^{2}+(1-3)^{2}} \quad 3.61$

