

What you'll learn about

- Representing Real Numbers
- Order and Interval Notation
- Basic Properties of Algebra
- Integer Exponents
- Scientific Notation
... and why
These topics are fundamental in the study of mathematics and science.

Real Numbers

A real number is any number that can be written as a decimal.
Subsets of the real numbers include:

- The natural (or counting) numbers: \{1,2,3...\}
- The whole numbers: $\{0,1,2, \ldots\}$
- The integers: $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

Rational Numbers

Rational numbers can be represented as a ratio a / b where a and b are integers and $b \neq 0$. We can describe rational numbers using set-builder notation:

$$
\left\{\left.\frac{a}{b} \right\rvert\, a, b \text { are integers, and } b \neq 0\right\}
$$

The decimal form of a rational number either terminates or is indefinitely repeating.

A number is irrational if it is not rational. The decimal form of an irrational number is infinitely nonrepeating.

The Real Number Line

Order of Real Numbers

Let a and b be any two real numbers.

Symbol
$a>b$ $a<b \quad a-b$ is negative $a \geq b \quad a-b$ is positive or zero
$a \leq b \quad a-b$ is negative or zero

Read
a is greater than b
a is less than b
a is greater than or equal to b
a is less than or equal to b

The symbols $>,<, \geq$, and \leq are inequality symbols.

Trichotomy Property

Let a and b be any two real numbers.
Exactly one of the following is true:

$$
a<b, \quad a=b, \text { or } a>b .
$$

Example Interpreting Inequalities

Describe and graph the interval of real numbers for $-3 \leq x<5$.

Example Interpreting Inequalities

Describe and graph the interval of real numbers for $-3 \leq x<5$.

The double inequality represents all real numbers between -3 and 5 , including -3 and excluding 5.

Bounded Intervals of Real Numbers

Let a and b be real numbers with $a<b$.

Interval
Notation
$[a, b]$
Inequality
Notation
(a, b)
$[a, b)$
$a \leq x<b$
$(a, b]$
$a<x \leq b$

Graph

The numbers a and b are the endpoints of each interval.

Unbounded Intervals of Real Numbers

Let a and b be real numbers.

Interval
Notation

$$
[a, \infty)
$$

(a, ∞)

$$
x>a
$$

$x>a$

$$
(-\infty, b]
$$

$$
x \leq b
$$

$$
5
$$

$$
(-\infty, b)
$$

$x<b$

$$
x \geq a
$$

Notation

Inequality

$$
\cdots
$$

Graph

Each of these intervals has exactly one endpoint, namely a or b.

Properties of Algebra

Let u, v, and w be real numbers, variables, or algebraic expressions.

1. Communative Property

Addition: $u+v=v+u$
Multiplication $u v=v u$
2. Associative Property

Addition: $(u+v)+w=u+(v+w)$
Multiplication: $(u v) w=u(v w)$
3. Identity Property

Addition: $u+0=u$
Multiplication: $u \cdot 1=u$

Properties of Algebra

Let u, v, and w be real numbers, variables, or algebraic expressions.
4. Inverse Property

Addition: $u+(-u)=0$
Mulitiplication: $u \cdot \frac{1}{u}=1, u \neq 0$
5. Distributive Property

Multiplication over addition:
$u(v+w)=u v+u w$
$(u+v) w=u w+v w$
Multiplication over subtraction:

$$
\begin{aligned}
& u(v-w)=u v-u w \\
& (u-v) w=u w-v w
\end{aligned}
$$

Example Using the Distributive Property

Write the expanded form of $(x+3 y) x$.

Write the factored form of $4 z^{2}+20 z$.

Example Using the Distributive Property

Write the expanded form of $(x+3 y) x$.

$$
(x+3 y) x=x \cdot x+3 y \cdot x=x^{2}+3 x y
$$

Write the factored form of $4 z^{2}+20 z$.
$4 z^{2}+20 z=4 z(z+5)$

Properties of the Additive Inverse

Let u, v, and w be real numbers, variables, or algebraic expressions.

Property

1. $-(-u)=u$
2. $(-u) v=u(-v)=-u v$
3. $(-u)(-v)=u v$
4. $(-1) u=-u$
5. $-(u+v)=(-u)+(-v)$

Example

$-(-3)=3$
$(-4) 3=4(-3)=-12$
$(-6)(-7)=42$
$(-1) 5=-5$
$-(7+9)=(-7)+(-9)=-16$

Exponential Notation

Let a be a real number, variable, or algebraic expression and n a positive integer. Then $a^{n}=a \cdot a \cdot a \cdot \ldots \cdot a$, where n is the exponent, a is the base, and a^{n} is the \boldsymbol{n} th power of \boldsymbol{a}, read as " a to the nth power."

Properties of Exponents

Let u and v be a real numbers, variables, or algebraic expressions and m and n be integers. All bases are assumed to be nonzero.

Property

1. $u^{m} u^{n}=u^{m+n}$
2. $\frac{u^{m}}{u^{n}}=u^{m-n}$
3. $u^{0}=1$
4. $u^{-n}=\frac{1}{u^{n}}$
5. $(u v)^{m}=u^{m} v^{m}$
6. $\left(u^{m}\right)^{n}=u^{m m}$
7. $\left(\frac{u}{v}\right)^{m}=\frac{u^{m}}{v^{m}}$

Example

$5^{3} \cdot 5^{4}=5^{3+4}=5^{7}$
$\frac{x^{9}}{x^{4}}=x^{9-4}=x^{5}$
$8^{0}=1$
$y^{-3}=\frac{1}{y^{3}}$
$(2 z)^{5}=2^{5} z^{5}=32 z^{5}$
$\left(x^{2}\right)^{3}=x^{23}=x^{6}$
$\left(\frac{a}{b}\right)^{7}=\frac{a^{7}}{b^{7}}$

Example Simplifying Expressions Involving Powers

Simplify $\frac{u^{2} v^{-3}}{u^{-1} v^{2}}$.

Example Simplifying Expressions Involving Powers

Simplify $\frac{u^{2} v^{-3}}{u^{-1} v^{2}}$.

$$
\frac{u^{2} v^{-3}}{u^{-1} v^{2}}=\frac{u^{2} u^{1}}{v^{2} v^{3}}=\frac{u^{3}}{v^{5}}
$$

Scientific Notation

Any positive number can be written in scientific notation.
$c \times 10^{m}$, where $1 \leq c<10$ and m is an integer.

Example Converting to Scientific Notation

Convert 0.0000345 to scientific notation.

Example Converting to Scientific Notation

Convert 0.0000345 to scientific notation.

$0.0000345=3.45 \times 10^{-5}$

Example Converting from Scientific Notation

Convert 1.23×10^{5} from scientific notation.

Example Converting from Scientific Notation

Convert 1.23×10^{5} from scientific notation.

123,000

Quick Review

1. List the positive integers between -4 and 4 .
2. List all negative integers greater than -4 .
3. Use a calculator to evaluate the expression 2(4.5)-3 $\frac{2.3-4.5}{}$. Round the value to two decimal places.
4. Evaluate the algebraic expression for the given values of the variable. $x^{3}+2 x-1, x=-1,1.5$
5. List the possible remainders when the positive integer n is divided by 6 .

Quick Review Solutions

1. List the positive integers between -4 and $4 . \quad\{1,2,3\}$
2. List all negative integers greater than -4 . $\{-3,-2,-1\}$
3. Use a calculator to evaluate the expression

2(4.5)-3
$\frac{2.3-4.5}{2}$. Round the value to two decimal places. -2.
4. Evaluate the algebraic expression for the given values of the variable. $x^{3}+2 x-1, x=-1,1.5 \quad\{-4,5.375\}$
5. List the possible remainders when the positive integer n is divided by $6.1,2,3,4,5$

