P.1 Real Numbers

Copyright © 2011 Pearson, Inc.

What you'll learn about

- Representing Real Numbers
- Order and Interval Notation
- Basic Properties of Algebra
- Integer Exponents
- Scientific Notation

... and why These topics are fundamental in the study of mathematics and science.

Real Numbers

- A **real number** is any number that can be written as a decimal.
- Subsets of the real numbers include:
- The natural (or counting) numbers: {1,2,3...}
- The **whole numbers**: {0,1,2,...}
- The **integers**: {...,-3,-2,-1,0,1,2,3,...}

Rational Numbers

Rational numbers can be represented as a ratio a/bwhere a and b are integers and $b \neq 0$. We can describe rational numbers using **set-builder notation**:

$$\left\{\frac{a}{b}\middle|a, b \text{ are integers, and } b \neq 0\right\}$$

The decimal form of a rational number either **terminates** or is **indefinitely repeating**.

A number is **irrational** if it is *not* rational. The decimal form of an irrational number is infinitely nonrepeating.

The Real Number Line

Order of Real Numbers

Let a an	nd b be	any two	o real	numl	bers.

Symbol	Definition	Read
a > b	a-b is positive	<i>a</i> is greater than <i>b</i>
a < b	a-b is negative	a is less than b
$a \ge b$	a - b is positive or zero	<i>a</i> is greater than or equal to <i>b</i>
$a \leq b$	a - b is negative or zero	<i>a</i> is less than or equal to <i>b</i>

The symbols >, <, \geq , and \leq are **inequality symbols**.

Trichotomy Property

Let *a* and *b* be any two real numbers. Exactly one of the following is true:

$$a < b$$
, $a = b$, or $a > b$.

Example Interpreting Inequalities

Describe and graph the interval of real numbers for $-3 \le x < 5$.

Example Interpreting Inequalities

Describe and graph the interval of real numbers for $-3 \le x < 5$.

The *double inequality* represents all real numbers between –3 and 5, including –3 and excluding 5.

Bounded Intervals of Real Numbers

Let *a* and *b* be real numbers with a < b.

Interval	Inequality	Graph
Notation	Notation	
[<i>a</i> , <i>b</i>]	$a \le x \le b$	a b
(a, b)	a < x < b	$\xleftarrow{[} \\ a \qquad b \qquad \qquad$
[<i>a</i> , <i>b</i>)	$a \le x < b$	$\xleftarrow{[}\\a b \end{pmatrix}$
(<i>a</i> , <i>b</i>]	$a < x \le b$	

The numbers *a* and *b* are the **endpoints** of each interval.

Copyright © 2011 Pearson, Inc.

Unbounded Intervals of Real Numbers

Each of these intervals has exactly one endpoint, namely *a* or *b*.

Copyright © 2011 Pearson, Inc.

Properties of Algebra

Let *u*, *v*, and *w* be real numbers, variables, or algebraic expressions. **1.** Communative Property Addition: u + v = v + uMultiplication uv = vu2. Associative Property Addition: (u + v) + w = u + (v + w)Multiplication: (uv)w = u(vw)**3. Identity Property** Addition: u + 0 = uMultiplication: $u \cdot 1 = u$

Properties of Algebra

Let u, v, and w be real numbers, variables, or algebraic expressions.

- 4. Inverse Property
- Addition: u + (-u) = 0
- Mulitiplication: $u \cdot \frac{1}{u} = 1, \ u \neq 0$
- **5. Distributive Property**

Multiplication over addition:

u(v+w) = uv + uw

(u+v)w = uw + vw

Multiplication over subtraction:

u(v-w) = uv - uw

$$(u-v)w = uw - vw$$

Example Using the Distributive Property

Write the expanded form of (x + 3y)x.

Write the factored form of $4z^2 + 20z$.

Copyright © 2011 Pearson, Inc.

Example Using the Distributive Property

Write the expanded form of (x + 3y)x.

$$(x+3y)x = x \bullet x + 3y \bullet x = x^2 + 3xy$$

Write the factored form of $4z^2 + 20z$.

$$4z^2 + 20z = 4z(z+5)$$

Copyright © 2011 Pearson, Inc.

Properties of the Additive Inverse

Let *u*, *v*, and *w* be real numbers, variables, or algebraic expressions. **Property Example**1. -(-u) = u -(-3) = 32. (-u)v = u(-v) = -uv (-4)3 = 4(-3) = -123. (-u)(-v) = uv (-6)(-7) = 424. (-1)u = -u (-1)5 = -55. -(u+v) = (-u) + (-v) -(7+9) = (-7) + (-9) = -16

Exponential Notation

Let *a* be a real number, variable, or algebraic expression and *n* a positive integer. Then $a^n = a \cdot a \cdot a \cdot a \cdot ... \cdot a$, where *n* is the **exponent**, *a* is the **base**, and a^n is the **nth power of** *a*, read as "*a* to the *n*th power."

Properties of Exponents

Let *u* and *v* be a real numbers, variables, or algebraic expressions and *m* and *n* be integers. All bases are assumed to be nonzero. **Property**

1. $u^{m}u^{n} = u^{m+n}$ $2. \ \frac{u^m}{u^n} = u^{m-n}$ 3. $u^{\circ} = 1$ 4. $u^{-n} = \frac{1}{u^n}$ 5. $(uv)^m = u^m v^m$ 6. $(u^m)^n = u^{mn}$ 7. $\left(\frac{u}{u}\right)^m = \frac{u^m}{u}$

Example

 $5^3 \cdot 5^4 = 5^{3+4} = 5^7$ $\frac{x^{9}}{x^{4}} = x^{9-4} = x^{5}$ $8^{\circ} = 1$

$$y^{-3} = \frac{1}{y^3}$$

$$(2z)^{\scriptscriptstyle 5} = 2^{\scriptscriptstyle 5} z^{\scriptscriptstyle 5} = 32z^{\scriptscriptstyle 5}$$

$$(x^2)^3 = x^{2\cdot 3} = x^6$$

$$\left(\frac{a}{b}\right)^{\prime} = \frac{a^{\prime}}{b^{\prime}}$$

Copyright © 2011 Pearson, Inc.

Example Simplifying Expressions Involving Powers

Simplify
$$\frac{u^2 v^{-3}}{u^{-1} v^2}.$$

Example Simplifying Expressions Involving Powers

Simplify
$$\frac{u^2 v^{-3}}{u^{-1} v^2}$$
.

$$\frac{u^2 v^{-3}}{u^{-1} v^2} = \frac{u^2 u^1}{v^2 v^3} = \frac{u^3}{v^5}$$

Copyright © 2011 Pearson, Inc.

Scientific Notation

Any positive number can be written in **scientific notation**.

$c \times 10^m$, where $1 \le c < 10$ and *m* is an integer.

Copyright © 2011 Pearson, Inc.

Example Converting to Scientific Notation

Convert 0.0000345 to scientific notation.

Example Converting to Scientific Notation

Convert 0.0000345 to scientific notation.

$0.0000345 = 3.45 \times 10^{-5}$

Example Converting from Scientific Notation

Convert 1.23×10^5 from scientific notation.

Example Converting from Scientific Notation

Convert 1.23×10^5 from scientific notation.

123,000

Copyright © 2011 Pearson, Inc.

Quick Review

- 1. List the positive integers between -4 and 4.
- 2. List all negative integers greater than -4.
- 3. Use a calculator to evaluate the expression
- $\frac{2(4.5)-3}{2.3-4.5}$. Round the value to two decimal places.
- 4. Evaluate the algebraic expression for the given values
- of the variable. $x^3 + 2x 1$, x = -1, 1.5
- 5. List the possible remainders when the positive integer *n* is divided by 6.

Quick Review Solutions

- 1. List the positive integers between -4 and 4. $\{1,2,3\}$
- 2. List all negative integers greater than -4. $\{-3, -2, -1\}$
- 3. Use a calculator to evaluate the expression
- $\frac{2(4.5)-3}{2.3-4.5}$. Round the value to two decimal places. -2.73
- 4. Evaluate the algebraic expression for the given values
- of the variable. $x^3 + 2x 1$, $x = -1, 1.5 \{-4, 5.375\}$
- 5. List the possible remainders when the positive integer n is divided by 6. 1,2,3,4,5